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Abstract

The thermal conductivity and electrical resistivity of single crystals of CeIrIn5, one of

the members of the CeMIn5 family (M = Co, Ir or Rh), were measured as a function of

temperature, magnetic field, doping and current orientation with respect to the crystal

axes, to investigate the superconducting and normal states of this compound. In particu-

lar the aim of this study was to determine the gap symmetry of CeIrIn5, a heavy-fermion

superconductor with Tc=0.4K.

Comparison of the in-plane, κa, and inter-plane, κc, thermal conductivity of high-

purity CeIrIn5 crystals as T → 0 revealed a large anisotropy of the superconducting gap,

which suggested a hybrid Eg gap symmetry for this compound. Our doping and magnetic

field studies support this suggestion. The doping study with light substitution of Ce with

La reveals universal heat transport in the plane and non-universal heat transport along

the tetragonal axis. This is the first observation of universal heat transport in a heavy

fermion system. In the magnetic field study, measurements of the overall temperature

and magnetic field dependence of the inter-plane thermal conductivity, κc, in the mixed

state show a clear anomaly at low temperature. This anomaly is most pronounced in the

highest purity samples and for the magnetic field applied in the ab plane. The resulting

H − T phase diagram suggests the existence of a new phase inside the superconducting

state, which may confirm the existence of a two-component order parameter in this

material.

Finally, electrical resistivity measurements reveal an anomalous T 4/3 power law re-

sistivity, ρ(T ) = ρ0 + AT 4/3, in the high field non-Fermi liquid regime of inter-plane

transport. This suggests the presence of ferromagnetic spin fluctuations in this com-

pound, beyond the well-known antiferromagnetic spin fluctuations in the 115 family.

These ferromagnetic spin fluctuations are lead to a quantum phase transition at high

fields in CeIrIn5.
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Sommaire

La conductivité thermique et la résistivité électrique de mono-cristaux de CeIrIn5, un des

membres de la famille de composés du type CeMIn5 (M = Co, Ir ou Rh), ont été mesurées

en fonction de la température, du champ magnétique, du dopage et de la direction du

courrant appliqué par rapport aux axes cristallographiques, dans le but d’étudier l’état

normal et supraconducteur de ce matériau. L’objectif principal de cette étude est de

déterminer la symmétrie du gap supraconducteur de CeIrIn5, un fermion lourd devenant

supraconducteur en dessous de Tc=0.4K.

La comparaison de la conductivité thermique lorsque T → 0, dans le plan, κa, avec

celle perpendiculaire aux plans, κc dans des mono-cristaux de grandes puretés de CeIrIn5

revèle une grande anisotropie du gap supraconducteur, suggérant ainsi une symmétrie

hybride pour le gap Eg de ce composé. De plus une étude en fonction du dopage, réalisée

en substituant des atomes de Ce par des atomes de La, révèle l’universalité du transport

thermique dans le plan, alors qu’il est non-universel le long de l’axe tétragonal. Ceci

constitue la première observation de transport thermique universel dans un système à

fermions lourds.

Les mesures de la dépendence en champ magnétique et en température de la con-

ducivité thermique inter-plan, κc, dans l’état mixte, révèle une anomalie très claire

à basse température. Le diagramme de phase H − T extrait de ces mesures suggère

l’existence d’une nouvelle phase à l’intérieur même de l’état supraconducteur, pouvant

ainsi confirmer l’existence d’un paramètre d’ordre à deux composantes dans ce matériau.

Enfin, les mesures de résistivité électriques hors plan à haut champ magnétique, dans

le régime non-liquide de Fermi, révèlent une dépendence en température anormale, telle

que ρ(T ) = ρ0+AT
4/3. Ceci suggère la présence de fluctuations de spin ferromagnétiques,

contrairement aux fluctuations de spin antiferromagnétiques observées dans la famille

115. Les fluctuations ferromagnétiques de spin mènent alors à une transition de phase

quantique à haut champ magnétique dans CeIrIn5.
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Statement of Originality

The discovery of superconductivity in heavy-fermion materials and copper oxides has
attracted considerable attention in the past thirty years. One of the main questions
is what causes high and low Tc in these two compounds which show proximity to or
coexistence with AFM order in their phase diagram. In this regard the first essential step
is to determine the symmetry of the order parameter. In this respect, much effort has
been focused on the CeMIn5 (M=Co, Ir, Rh) compounds, which exhibit unconventional
superconductivity in the vicinity of a quantum critical point, most likely magnetic.

While the superconducting state in CeCoIn5 with Tc = 2.3 K is generally thought
to have d-wave symmetry (although with some controversy as to whether it is dx2−y2 or
dxy), much less is known about the related material CeIrIn5 with Tc = 0.4 K. Thus, the
study presented in this thesis provides the first directional study of the gap in CeIrIn5,
using heat transport measurements on the purest single crystals ever studied, to shed
light on the mechanism of superconductivity in these systems.

The novelty of the present work resides in the extensive investigation of the super-
conducting and normal states as a function of crystal orientation, temperature, field and
doping. Our main findings are:

• Determination of gap symmetry in CeIrIn5.

Using the anisotropy of thermal conductivity at very low temperatures we suggest
a hybrid Eg gap in tetragonal point group symmetry for CeIrIn5. We were the first
to report two distinct gap symmetries in the closely related compounds CeCoIn5

and CeIrIn5.

• The first observation of universal thermal conductivity in heavy fermion systems.

Response to doping provides an efficient way to study the superconducting pairing
mechanism in superconductors. Universal behaviour, a constancy of the electronic
residual thermal conductivity with variation of impurity density, was observed ex-
perimentally in cuprates and Sr2RuO4, but never in any of heavy fermion super-
conductors. Measuring pure and doped single crystals CeIrIn5 we found universal
transport in the plane and non-universal transport along the tetragonal axis, which
both consistent with hybrid Eg gap structure.
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Statement of Originality vii

• The first observation of multi-phase superconductivity in 115 family.

The highly pure c−axis crystal under application of magnetic field in the ab plane
shows a very low temperature anomaly in the thermal conductivity data. The
anomalies in various fields delineate a new phase in the superconducting state.
Comparing with theoretical models and a recent measurement we suggest the gap
symmetry of each phase.

• A resistivity of ρ(T ) = ρ0 + AT 4/3 in the presence of a high magnetic field for a
large temperature range.

The quadratic exponent associated with a Fermi-liquid behaviour is observed at low
temperatures and at low fields. This item which is the most significant result of
this study may define the presence of ferromagnetic spin fluctuations in 115 family
which lead to a ferromagnetic quantum phase transition in CeIrIn5.

All preparation, characterization and measurements of CeIrIn5 samples reported here
were performed by myself, initially with the assistance of Shiyan Li, who helped me to
learn fridge running.

Makariy Tanatar also assisted with preparation and measurement of the c-axis CeRhIn5

crystal, measurement of 20%La-doped CeIrIn5 samples and preparation of samples for
µSR measurements (results in Appendix A, B and C), in the last year of my PhD. The
µSR measurements were performed by myself in TRIUMF, Canada with the assistance of
G.J. Macdougall, J.A. Rodriguez, A. Aczel and J.P. Carlo. The amazingly pure crystals
in this study were grown by our collaborator Cedomir Petrovic in Brookhaven National
Laboratory. Definitely without these highly-purity crystals we were unable to obtain
these new results.

The major achievements of this thesis are presented in the following papers:

1. ”Hybrid gap structure in the heavy-fermion superconductor CeIrIn5”
H. Shakeripour, M. A. Tanatar, S. Y. Li, C. Petrovic, and Louis Taillefer,
Phys. Rev. Lett. 99, 1877004 (2007).
2. ”Universal heat transport in a heavy-fermion superconductor”
H. Shakeripour, M. A. Tanatar, C. Petrovic, and Louis Taillefer,
(preprint, to be submitted).
3. ”Multi-phase superconductivity in heavy-fermion superconductor CeIrIn5”
H. Shakeripour, M. A. Tanatar, C. Petrovic, and Louis Taillefer,
(manuscript in preparation).
4. ”Ferromagnetic quantum phase transition in a spin-singlet superconductor CeIrIn5”
H. Shakeripour, M. A. Tanatar, C. Petrovic, and Louis Taillefer,
(manuscript in preparation).
The papers were written primarily by myself, Makariy Tanatar and Louis Taillefer.
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for reading carefully the manuscript.

I would like to thank all people who have made this work possible for me. It is a
pleasure to thank Dr. Johnpierre Paglione for initiating my interest in the wide field of
heavy fermion superconductivity and for many stimulating discussions. I would like to
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Chapter 1

Introduction

1.1 Motivation

The discovery of magnetically-mediated superconductivity in the heavy-fermion material

CeIn3 [139] has attracted considerable attention as a possible archetype for unconven-

tional pairing in a variety of superconductors. However, in order to make progress, it

is essential to determine the symmetry of the order parameter, something which is very

difficult to do in CeIn3 because its superconductivity exists only under high pressure.

In this respect, the closely related family of CeMIn5 (M=Co, Ir, Rh) compounds offers

an ideal testing ground, as two members of this family show superconducting order at

ambient pressure.

In spite of there are a few studies that have already aimed at elucidating the gap

structure of CeCoIn5 [94, 13, 217, 182], the closely related cousin of CeIrIn5, but still the

order parameter and gap structure of CeCoIn5 are far from solidly established. While

most measurements agree to the presence of nodes in the gap, there is a lively controversy

as to the actual order parameter (whether dx2−y2 or dxy, for example) and the origin of

uncondensed electrons [217] (whether due to gapless regions [26], multi-band scenario

[217] or quantum criticality [242]). As regards CeIrIn5, several recent studies [153, 105]

suggest that it may actually support a different superconducting state. Until now, this

suggestion has been based on indirect evidence, e.g. a comparison of magnetic fluctuation

spectra (assumed to cause superconductivity) and phase diagram vs. alloying or pressure.

One of the main conclusion of this manuscript, the existence of pronounced anisotropy

in transport incompatible with a d-wave gap, as believed to be realized in closely related

CeCoIn5, and more compatible with a hybrid gap, is robust against details of the Fermi

1



Chapitre 1 : Introduction 2

surface, because it comes from the asymptotic (T → 0) behaviour. As demonstrated

by Graf et al. [74], the asymptotic behaviour of the thermal conductivity reveals the

symmetry of the superconducting order parameter independently of details of the Fermi

surface. To date this is the first observation of different superconducting symmetries in

two closely related compounds with the same Fermi surface.

Further information was provided by our impurity and magnetic field studies: the

first observation of universal thermal conductivity in a heavy fermion compound, multi-

component/multi-phase superconductivity, and more importantly discovery of ferromag-

netic quantum phase transition in CeIrIn5 are all new results presented in this thesis.

The significance of our report is that it provides direct information on the gap struc-

ture of CeIrIn5 and its potential difference with respect to that of CeCoIn5. This could

be of prime importance for the whole field of magnetically-mediated superconductivity,

by providing an ideal (and unprecedented) test case for the relation between magnetic

fluctuations and superconducting order parameter, via the comparison of two closely

related materials (with the same crystal structure and nearly identical Fermi surfaces).

The present findings in CeIrIn5 have the potential to transform the field of heavy-fermion

superconductivity by revealing the intrinsic anisotropy of the underlying electron inter-

actions.

In this Chapter we review the major historical developments which have laid the

groundwork for the study of unconventional superconductivity in CeMIn5 compound

which we undertake in Chapters 5, 6, 7, 8 and 9.

1.2 Conventional superconductivity

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes, who was studying

the resistance of solid mercury at cryogenic temperatures using the recently-discovered

liquid helium as a refrigerant. The next important finding occurred in 1933, when Meiss-

ner and Ochsenfeld discovered that superconductors expelled applied magnetic fields,

a phenomenon which is known as the Meissner effect. In 1935, F. London proposed a

relation between the current density and electromagnetic vector potential in a supercon-

ducting metal, known as the London equation, j = −nse2

mec
A. Here ns is the density of

superconducting electrons, e the electron charge, me the electron mass, and c the speed of

light. According to the London theory, the magnetic field can only penetrate a distance

into the superconductor, with λL given by λL =
√

nse2/mec2 [18].
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The phenomenological Ginzburg-Landau theory of superconductivity was devised by

Landau and Ginzburg in 1950 [66]. This theory had great success in explaining the

macroscopic properties of superconductors by adding the important concept of a super-

conducting wave function or order parameter. In particular, Abrikosov [1] showed that

Ginzburg-Landau theory predicts two categories of superconductors referred to as type

I and type II. He proposed that materials in which k = λL/ξ is greater than 1/
√

2 would

exhibit type II superconductivity (ξ(T ) is the coherence length or the size of a Cooper

pair).

Also in 1950, Maxwell and Reynolds found a direct relation between the critical tem-

perature of a superconductor and the isotopic mass of the constituent element, Tc ∝M−α,

whereM is the ionic mass and α ≈ 1/2. This important discovery pointed to the electron-

phonon interaction as the microscopic mechanism responsible for superconductivity [18].

The complete microscopic theory of superconductivity was finally proposed in 1957 by

Bardeen, Cooper, and Schrieffer [24]. BCS theory explained the superconducting current

as a superfluid of Cooper pairs, pairs of electrons interacting through the exchange of

phonons. 1 In this theory a macroscopic wave function is considered for superconducting

electrons as

|Ψ〉 =
∏

k

(uk + vkb
+
k )|0〉 (1.1)

where b+k creates an electron pair (k ↑, -k ↓) and |0〉 is the filled Fermi sea ground

state. Based on this wave function, Cooper and Schrieffer found that the excitation

spectrum exhibits quasiparticles of energy Ek with an energy gap ∆ which plays an

essential role in the properties of superconductors. The BCS theory predicts a second-

order phase transition at a critical temperature, Tc, a specific heat jump at the transition

temperature, a complete diamagnetic effect, and a quantized magnetic flux.

In 1962, Josephson [96] predicted that a supercurrent can flow between two pieces

of superconductor separated by a thin layer of insulator, with a magnitude of Is =

Ic sin(∆φ), where ∆φ is the difference in the phase of the order parameter in the two

superconductors. This prediction shows the importance of the phase of the order pa-

rameter. This phenomenon, called the Josephson effect, is applied in superconducting

1BCS theory relies on an earlier discovery by Cooper (1956), who showed that the ground state of a
material is unstable with respect to pairs of ’bound’ electrons. These pairs are known as Cooper pairs.
The formation of Cooper pairs is supported by the fact that BCS and the Ginzburg-Landau theories
predict the charge and mass of the supercurrent particle to be 2e and 2me respectively [18].
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devices such as SQUIDs.

In brief, there are two specific properties for conventional superconductivity. The

electron pair has s-wave symmetry which means the two electrons with opposite spin

and momentum are effectively paired (spin singlet state). These cooper pairs form a

condensate state that can be described by a single quantum-mechanical phase, leading

to long-range macroscopic phase coherence. The gap is isotropic in the momentum space,

independent of the directions at the Fermi surface. Moreover, the microscopic mechanism

of conventional superconductivity is based on the electron-phonon interaction. These two

are not valid for unconventional superconductors which we discuss them as follows.

1.3 Unconventional superconductivity

Until 1986, it was believed that BCS theory forbade superconductivity at temperatures

above 30 K. In that year, Bednorz and Müller [29] discovered superconductivity with a

transition temperature of 35 K. Shortly after a high critical temperature 92 K was found

in YBCO cuprate. Many other cuprate superconductors have since been discovered,

and the theory of superconductivity in these materials is one of the major outstanding

challenges of condensed matter physics.

Unconventional superconductivity means that the symmetry of the superconducting

gap function is lower than the symmetry of the underlying Fermi surface. Experimental

evidence for this is provided by the power-law temperature dependence of the electronic

excitation spectrum below Tc, instead of exponential behaviour expected in conventional

superconductivity, indicating presence of point nodes and/or line nodes in the gap. The

superconducting condensate is formed by Cooper pairs with non-zero angular momentum.

Unconventional superconductivity, or the study of superconductors with anisotropic

order parameter, began in 1979 with the discovery of superconductivity in the heavy-

fermion (HF) CeCu2Si2 [199] and then in organic compound and High-Tc cuprates. These

superconductors have many unusual properties that are difficult to understand in terms

of standard BCS theory, in particular symmetry and e-ph mechanism.

Moreover, in recent years other unconventional superconductors have been discovered.

These include some that do not superconduct at high temperatures, such as SrRu2O4

with Tc = 1.5K [130] and superconductors with high values of Tc, like MgB2 with Tc=39

K, which may be extreme examples of conventional superconductors.

In the following we will briefly discuss two examples of unconventional superconduc-
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tivity: cuprate and heavy-fermion materials. Then, we introduce shortly the classification

of unconventional superconductors so far identified.

1.3.1 High-Tc cuprate superconductors

High temperature superconductors are the class of unconventional superconductors which

had for sure the highest impact on the development of concepts and understanding of

the whole field. The first unconventional singlet d-wave superconductor was discovered

in LaBaCuO by Bednorz and Müller in 1986 with a Tc nearly 35 K. This was well above

the highest critical temperature known at the time (Tc=23 K) and thus the new family

of materials were called high-temperature superconductors.

Following the discovery, one of the most challenges in condensed-matter physics is

the question of the symmetry of the pairing state and thus pairing mechanism in the

high-temperature superconductor. The determination of the order-parameter symmetry

is a crucial first step in identifying the pairing mechanism and in the development of

a microscopic theory for high-temperature superconductivity [222]. A growing list of

theoretical calculations and experiments have suggested a d-wave (or more precisely,

dx2−y2-wave) superconductivity in cuprates, with gap function ∆(k) = ∆0 cos(2φ), where

φ is the angle of the quasiparticle momentum in the ab plane and ∆0 the maximal value

of the energy gap [219]. The gap has a strongly anisotropic magnitude with nodes along

the (110) direction in k space and a sign change in the order parameter between the lobes

in the kx and ky directions.

There are two key properties for d-wave state. First, it exhibits nodes in the energy

gap vs φ that lead to zero temperature excitations. The presence of such excitations

is based on angle-resolved photoemission spectroscopy (ARPES) measurements and the

low temperature power law behaviour in some physical quantities. Second, the d-wave

symmetry is implied by a number of possible superconducting pairing mechanisms, par-

ticularly those involving magnetic interactions (antiferromagnetic spin fluctuations) (for

a review see [222] and [45]). The motivation for this thinking is the proximity of the

superconducting state to an antiferromagnetic state in the phase diagram. The antifer-

romagnetic state has a relatively high Neel temperature of 600 K, and the unusually high

TN and Tc suggest some common origin for their properties.
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1.3.2 Heavy fermion superconductors

Superconductivity, which was one of the best understood many-body problems in physics,

became again a challenging problem when a new kind of superconductivity was discovered

in the heavy fermion material CeCu2Si2 [199]. This discovery seemed to opposite existing

wisdom that magnetism destroys superconductivity.

Since this discovery, heavy fermion superconductivity has been observed in several

Ce, U, Pr, and recently Pu-based compounds [235]. Multi-phase diagrams in heavy

fermion UPt3 [200,201,79] and U(Be1−xThx)13 [197,159] indicate superconductivity with

multi-component order parameter. UPd2Al3 and UNi2Al3 [63,64] show superconductivity

coexisting with the AF phase. Furthermore, pressure-induced superconductivity has been

reported in AFM metals CeCu2Ge2 [95], CePd2Si2 [76, 139], CeRh2Si2 [149], CeNi2Ge2

[119], and CeIn3 [139,230].

Quite recently, several kinds of new heavy-fermion superconductors have been dis-

covered. One is a family of CeMIn5 (M=Co, Rh, and Ir) [81, 173, 174] which the phase

diagram shows the coexistence of different ground states, such as SC and AFM. Another

is the coexistence of superconductivity and ferromagnetism in UGe2 at high pressure

and URhGe at ambient pressure [188, 12]. These materials have attracted much at-

tention, since it is believed that a triplet pairing state coexists with the ferromagnetic

phase. Moreover, other new superconductors, including neither Ce nor U atom, have

been discovered. In PrOs4Sb12 (Tc=1.85 K), the possibility of a double transition has

been indicated [27,92]. In the Pu-based compound PuCoGa5 [183] with the same crystal

structure as a family of CeMIn5, an unusually high transition temperature Tc=18.5 K

has been reported.

Heavy fermion behaviour has been found at low temperatures in a variety of states,

including metallic and superconducting states. The compounds involve at least one

element containing outer shell f electrons, which are believed to be the electrons that are

responsible for the superconductivity. The common factor in heavy fermion materials is

a large effective mass and electronic specific heat coefficient, γ. The huge effective mass

is related to the strong correlation between the localized f electrons and the conduction

electrons.

Most of the properties of heavy fermion systems can be explained by the competition

of the on-site Kondo interaction (an antiferromagnetic interaction between the localized

moments and the spins of the conduction electrons) and the inter-site RKKY exchange

interaction. At high temperatures the RKKY interaction dominates, which leads to lo-
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Figure 1.1: T − P phase diagram of CeIn3 (from [139]).

calized moments; therefore the magnetic susceptibility, for instance, near room temper-

ature follows a Curie-Weiss like temperature dependence as expected for local moments,

χ ∝ 1
T−θCW

, where θCW is the Curie-Weiss temperature. The resistivity is dominated by

incoherent scattering of the conduction electrons off the local moments. On the other

hand, when the temperature is low enough the Kondo process dominates, which leads

to the local singlet ground state (Kondo effect). This screening effect prevents the local

moments seen at room temperature from forming a long-range ordered state at low tem-

perature. Instead, below some coherence temperature, TK , local moment behaviour is

lost. With decreasing temperature the resistivity shows a peak followed by a drop, which

is interpreted as an onset of coherent scattering. Below TK , the magnetic susceptibility

saturates and becomes Pauli-like (temperature independent), corresponding to itinerant

moments [235].

The unconventional nature of heavy fermion superconductivity can be observed by

the following properties.

First, the power law temperature dependence of resistivity, specific heat, sound at-

tenuation, NMR spin lattice relaxation, and thermal conductivity below Tc support the

existence of the nodes in the superconducting gap or anisotropic pairing [142].

Second, introducing non-magnetic impurity to these systems efficiently breaks the

Cooper pair (see [97]). In contrast to conventional superconductors where dilute con-

centrations of non-magnetic impurities have little effect on the superconductivity. Non-
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magnetic impurities strongly affect the pair breaking like a magnetic impurity in s-wave

superconductors. This has been interpreted as evidence for non-s-wave pairing.

While the pairing mechanism in heavy fermion superconductivity is not understood

yet, there are several reports that the superconducting pairing is mediated by mag-

netic interactions. This has been suggested from the pressure induced superconductivity

in CeIn3 and CePd2Si2, which occurs with suppression of magnetism with increasing

pressure by enhancing hybridization between conduction electrons and local moments

(Fig. 1.1) [139].

In brief, heavy-fermion superconductors show a variety of ground states and offer rich

examples to investigate unconventional superconductivity in strongly correlated electron

systems. However, superconductivity has not been explained from the microscopic point

of view in these compounds, mainly due to the complicated band structures and strong

correlations.

1.4 Gap symmetry and classification of order para-

meters

Classification of the superconducting state depends on whether we have spin-singlet or

-triplet.

The general classification for the superconducting order parameter is based on its

behaviour under symmetry transformations. The full symmetry group O of the crystal

contains the gauge group U(1), crystal point group G, spin rotation group SU(2), and

time reversal symmetry group τ [142],

O = U(1) ⊗ G ⊗ SU(2) ⊗ τ. (1.2)

In conventional superconductors only gauge symmetry U(1) is broken below Tc, while

additional symmetries are broken at the phase transition in unconventional supercon-

ductors. The conventional superconducting state has full point symmetry of the crystal

lattice. For the rest of superconducting states, the point symmetry properties are bro-

ken. An important consequence of the broken point group symmetry is the existence

of zeroes in the order parameter, so called nodes, i.e. the order parameter vanishes at

points or lines on the Fermi surface. This leads to gapless excitation spectrum which

alters the low temperature behaviour of many physical properties in the superconducting
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Figure 1.2: Some examples of the gap symmetry. The isotropic gap with A1g symmetry
(s-wave), polar (line node), axial (point node), Eg (hybrid), E2u (hybrid II) (both with
point and line nodes) and d-wave gap symmetries are shown from left to right.

state. In particular, power laws ∝ T n are observed instead of an exponential temperature

dependence, and the exponent n is determined by the topology of the nodes [142]. Some

examples for the gap symmetries and the corresponding nodal structures are shown in

Fig. 1.2. In this Figure, the conventional s-wave gap is finite everywhere, while the polar

gap has a line of zeros in the basal plane. The axial gap vanishes along points nodes at

the poles. The hybrid gap has line of zeros in the basal plane and point nodes at the

poles and d-wave gap has four vertical line nodes.

The superconducting order parameter is proportional to the gap function ∆L
s1,s2

(k),

which is proportional to the amplitude of the wave function for the Cooper pair ΨL
s1,s2

(k) =

〈ψk,s1ψ−k,s2〉 . Because only those electrons which are located near the Fermi surface are

involved, k, the quasiparticle momentum, is considered near Fermi surface. si is the

electron spin, and ψ is the single electron wave function.

Pauli exclusion principle for fermions requires that the gap function to be antisym-

metric with respect to the permutation of two particles: ∆L
s1,s2

(k) = −∆L
s2,s1

(−k). In

the case of weak spin-orbit interaction, the total angular momentum L and total spin

S = s1 + s2 are good quantum numbres, and ∆s1,s2(k) can be written as a product of

orbital and spin parts,

∆L
s1,s2

(k) = gL(k)χs(s1, s2). (1.3)

The orbital part of the order parameter, gL(k) can be decomposed in a linear combination

of spherical harmonics YLm(k), with the orbital angular momentum L and its z-projection

m,

gL(k) =
L
∑

m=−L

aLmYLm(k̂). (1.4)
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So, L determines the type of pairing; gL(k) is even for even values of L and odd for odd

values of L, gL(k) = (−1)LgL(−k), and superconductors with L=0, 1, 2, 3, 4,... are

labelled as having s, p, d, f, g, ...-wave gap, respectively. This classification is useful for

isotropic systems 2.

The spin part of the order parameter, χs(s1, s2), is a product of the two spins for the

two electrons in the Cooper pair. Thus the gap function is a 2 × 2 matrix in spin space.

For singlet pairing, S=0, the spin part of the wave function is | ↑↓〉 - | ↓↑〉, and therefore

the gap function is given by

∆(k) = ∆gL(k)iσy , (1.5)

where L is even and σy is the Pauli matrix. The energy of single particle excitations is

Ek =

√

ξ2
k + ∆2|g(k)|2 , (1.6)

where ξk is the band energy relative to the chemical potential. For superconductors

with an isotropic ∆(k) the excitations have a finite energy gap everywhere at the Fermi

surface, while for anisotropic pairing the gap amplitude depends to the component of

g(k).

In the case triplet pairing (S=1), the wave function has three components correspond-

ing to the three different spin projections, Sz: | ↑↑〉, | ↑↓〉 + | ↓↑〉 and | ↓↓〉. Consequently,

we can write the order parameter as

∆(k) = i(d(k).~σ)σy = (dx(k)σx + dy(k)σy + dz(k)σz)iσy

=

(

−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)

(1.7)

The components (g1 = −dx + idy), g2 = dz and (g3 = dx + idy) are the orbital parts of

spin up | ↑↑〉, spin zero | ↑↓〉 + | ↓↑〉, and spin down | ↓↓〉 pairing state, respectively. The

2When crystal anisotropy is present, the spherical harmonics in Eq. (1.4) have to be replaced by the
basis functions of the different irreducible representations Γ of the point group of the crystal symmetry.

Now, Eq. (1.4) for both spin singlet and spin triplet gap symmetry transform to: g(k) =
∑dΓ

i=1
ηiψ

Γg

i
ˆ(k)

and d(k) =
∑dΓ

i=1
ηiψ

Γu

i
ˆ(k) , where the subscript g and u refer to even and odd basis functions re-

spectively. ψ
Γg

i
ˆ(k) and ψΓu

i
ˆ(k) are the basis functions of irreducible representations Γ of group G with

dimensionality dΓ [142]. One then invokes group theoretical arguments to decompose the point group
symmetry into its irreducible representations. This procedure has been carried out by many authors in
the case of strong spin-orbit coupling [197,227] and weak spin-orbit coupling [160]
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excitation energy for this case is

Ek =

√

ξ2
k + ∆2|d(k)|2 . (1.8)

In the presence of strong spin-orbit coupling only the total angular momentum J=L+S

is a good quantum number (only the total angular momentum is conserved), and the clas-

sification according to the physical electron spin is not possible [142]. Parity therefore

provides a useful classification scheme as pointed out by Anderson. Even and odd-parity

states are the counterpart of the singlet and triplet states mentioned above.

After this classification we introduce in brief the symmetry of the order parameter of

hybrid gaps, Eg and E2u. Eg is the suggested gap symmetry for CeIrIn5 compound in

this thesis.

1.4.1 Hybrid gap (Eg)

In a tetragonal crystal structure with point group symmetry D4h for spin-singlet even-

parity pairing, there are four one-dimensional (A1g, A2g, B1g and B2g) and three possible

two-dimensional representations (Eg). The famous reported dx2−y2 model in high-Tc su-

perconductors belongs to the B1g representation. The 2D Eg(1, i) representation with the

basis function kz(kx + iky) is called hybrid Eg gap. The nodal structure is characterized

by two linear point nodes, |∆(θ)| ∝ µpoint∆0(|θ|), where µpoint is the slope or curvature of

the gap at the node in a spherical coordinate system, in the c direction and a line node

in the basal plane.

1.4.2 Hybrid II gap (E2u)

The corresponding basis function is kz(kx+iky)
2. It belongs to hexagonal crystal structure

with point group symmetry D6h with spin-triplet parity pairing. The nodal structure is

characterized by quadratic point nodes, |∆(θ)| ∝ µ
′

point∆0(|θ|)2, in the c direction and a

line node in the basal plane. The crucial difference between the Eg and E2u states lies in

the opening of the gap with angle θ at the polar point nodes, as shown in Fig. 1.3.

The proposed model for the order parameter in the low-temperature phase of HF SC

UPt3 is the odd parity E2u state.
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Figure 1.3: The normalized excitation gap at T = 0 for two states Eg and E2u as a
function of the polar angle θ (from [72]).

1.4.3 Experimental probes of gap symmetry

As we mentioned above, classification of superconductors into singlet and triplet pairing

needs information on the parity and spin state of the pairing state. This information

can be accessed through measurements in a magnetic field due to the different response

of pairs with S=0 and S=1 to an applied magnetic field. The Knight shift of the nu-

clear magnetic resonance (NMR) frequency, muon spin rotation (µSR), or the magnetic

properties such as the Pauli limit can be used for studying the spin state. The Knight

shift is linear in the electron spin susceptibility χs, and therefore is a direct measure of

the spin polarization in the superconducting state. In a spin singlet superconductor the

spin contribution to the Knight shift falls rapidly on cooling through the transition. In

contrast, in a triplet superconductor the Knight shift remains unchanged below Tc [140].

Angle-resolved photoemission spectroscopy (ARPES) is a direct measurement that

reflects the symmetry of the paired state. The asymptotic behaviour of the thermal con-

ductivity in different direction of crystal axes is one of the best transport measurements

that can detect the symmetry of the order parameter [74]. Energy gap measurements

such as specific heat, penetration depth, superfluid density, point contact spectroscopy,

scanning tunnelling spectroscopy (STS), and ultrasound attenuation, are usually used

to determine the quasiparticle density of states especially from their low temperature

behaviour. Although, they may be misleading by the impurity scattering effect that

changes the superconducting state dramatically in which will lead to so-called gapless

superconductivity. Therefore theses measurements should be performed in highly pure

single crystals.

Phase sensitive phenomena can be used to determine the change of phase along dif-
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ferent directions. Phase information is usually probed by the Josephson effect which is

based on pair tunnelling. For more information the reader is referred to [68].

1.5 Review of thesis

In Chapter 2, an introduction to the basic theoretical concepts about the thermal con-

ductivity in both conventional and unconventional superconductors in zero and applied

magnetic field is given. A review of the current set of theoretical and experimental ideas

on the physical properties of heavy-fermion CeMIn5 family, mostly on CeIrIn5, is pre-

sented in Chapter 3. Providing an explanation of the experimental techniques used in

this study in Chapter 4, we will present our main experimental results in Chapters 5, 6,

7, 8 and 9.

In Chapter 5 we present zero field thermal conductivity results taken on highly pure

single crystals CeIrIn5. We suggest that Eg gap symmetry is the only candidate for gap

structure of this material among the all candidate gap symmetries in the tetragonal spin

singlet D4h point group symmetry. By adding non-magnetic La ions to the crystals, we

investigate the impurity effect on the residual linear term of thermal conductivity at

zero temperature in the superconducting state in Chapter 6. We found universal ther-

mal conductivity for the in-plane and non-universality for the inter-plane heat transport,

consistent with hybrid Eg gap symmetry proposed in the previous chapter. The effect

of magnetic field on the phase diagram of CeIrIn5 has been probed in Chapter 7. We

observed a phase transition inside of the superconductivity state; in another words, a

multi-component/multi-phase superconductivity has been detected. In Chapter 8, we

searched for quantum criticality near Hc2 in this compound, comparing to the closely

related material CeCoIn5 that shows a quantum critical point (QCP) at the upper su-

perconducting transition field, Hc2. We found no criticality at Hc2 for a- and c-axis

heat current directions in CeIrIn5. However, we found fascinating evidence for ferromag-

netic spin fluctuations which lead to quantum phase transition at much higher fields in

CeIrIn5, shown in Chapter 9. Further measurements and related results on CeIrIn5 and

antiferromagnetic CeRhIn5 are presented in Appendices.

A summary of thesis was made in the Chapter conclusion and possible further studies

were also pointed out at the end.



Chapter 2

Basic Theoretical Concepts on Heat

Transport

Heat transport is a directional probe for investigating the gap structure of superconduc-

tors. Tensorial character of the transport properties allows the measurement of several

independent components at the same time. This is very useful in the studies of highly

correlated systems, which are very anisotropic. Comparison of the behaviour of inde-

pendent components of a transport property gives important information about the gap

symmetry. Besides the electron carries, phonons and magnons can also carry heat, as

well as scatter the electrons. Therefore for interpretation of heat transport data one

must take into account all the different carriers and their associated scattering mecha-

nisms. The main weakness of the technique is that it is often difficult to separate these

contributions. Fortunately in the case of high-quality metallic crystals of heavy fermion

metals because of high concentration of conduction electrons, only electrons are effective

to carry heat at low temperatures.

In this chapter we provide some background theoretical concepts regarding the inter-

pretation of heat transport first in metals and then in conventional and unconventional

superconductors.

2.1 Electron conduction in metals

Metals conduct electricity via delocalised electrons within the metal lattice. The simplest

way of explaining conductivity in a metal is by using the Drude model (1900). Only a few

years after Thomson discovered the electron, Drude put forward his theory of electrical

14
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and thermal conductivity based on the idea that conduction electrons in metals behave

like atoms of gas. Although Drude’s original model did not include quantum mechanics,

his formula for the conductivity of metals remains correct even in the modern quantum

theory of metals. Later, Drude’s theory was refined within a theory based on the laws

of quantum mechanics by Sommerfeld (1927) who also started from the free electron gas

but took into account the Pauli Exclusion Principle by using Fermi-Dirac statistic.

2.1.1 Electrical conductivity

Here we discuss low temperature aspects of the electrical conductivity of mainly simple

metals. Concerning transition metals we make a brief remark on them. In these metals

not only s-electrons but also d-electrons are present in the conduction band. Although the

density of states of d-electrons at the Fermi energy exceeds that of s-electrons they hardly

contribute to conduction because of their low mobility. This poor mobility is mainly due

to the high effective mass of the electrons in the narrow bands. In transition metals the

mobility of the s-electrons is generally lower than in simple metals. This reduction is

caused by the scattering of s-electrons into d-band states. As a result, the conductivity

of transition metals is, in general, smaller than that of simple metals although both s-

and d-band electrons are present [56].

In the Fermi gas description of metals the electrical conductivity, σ, is given by the

Drude theory as:

σ =
ne2τ

m∗
(2.1)

where n is the density of electrons (in a relation of the density of states at the Fermi

surface, N(EF ) = 3n
2EF

), m∗ the effective mass of the conduction electrons, -e the electron

charge and τ is the average life time for free motion of the electrons between collisions

with impurities or other electrons.

This equation shows that the electrical conductivity depends on temperature mainly

via the different scattering processes which enter into the scattering life time τ . In a

typical metal there are three main scattering processes, scattering by impurities, electron-

electron scattering and electron-phonon scattering. These are independent processes,

and so a total effective scattering rate is a sum of these scattering rates. This empirical
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relationship is known as Matthiessen’s rule:

τ−1 = τ−1
e−imp + τ−1

e−e + τ−1
e−ph (2.2)

where τ−1
e−imp is the scattering rate by impurities, τ−1

e−e the electron-electron scattering

rate and τ−1
e−ph the electron-phonon scattering rate. This leads to the total resistivity

ρ = 1/σ that is a sum of independent contributions from each of these different scattering

processes. Each of these scattering life times is a characteristic function of temperature.

The impurity scattering rate, is essentially independent of temperature, at least for the

case of non magnetic impurities 1. The electron-electron scattering rate, is proportional to

τ−1
e−e ∝ T 2. At low temperature, well below the phonon Deby temperature, the electron-

phonon scattering rate is proportional to τ−1
e−ph ∝ T 5. Therefore we should expect that

resistivity of a metal is of the form

ρ = ρ0 + AT 2 + ... (2.3)

at very low temperature. The zero temperature resistivity, the residual resistivity, ρ0,

depends only on the concentration of impurities and therefore on purity and quality

of the sample. For most metals the resistivity indeed behaves as the Eq. (2.3) at low

temperatures [11].

2.1.2 Thermal conductivity

Thermal conductivity, κ, is a property of a material that indicates its ability to conduct

heat. It is defined as the coefficient of proportionality between a heat current jQ and an

applied temperature gradient ∇T , jQ = −κ∇T .

In typical metals, heat is mainly transported by electrons and phonons. Thus the

total thermal conductivity is the sum of the conductivities of these heat carriers, κ =

κe + κph, where κe and κph are thermal conductivity due to electrons and phonons,

respectively (In insulating solids, only phonons carry heat. Also in alloys or metals with

high impurity content electrons are strongly scattered by impurities and defects. Then

their contribution to the heat transport is heavily reduced and the phonon contribution

becomes dominant). However, in highly pure metals and at low temperatures, electrons

1For magnetic impurities the conduction electrons will tend to screen the spins of the impurities as a
results of Kondo effect, leading to a logarithmic increase of scattering with decreasing temperature.
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Figure 2.1: (Left) A schematic of the thermal conductivity in a conventional metal.
The dominant scatterers are impurities at low temperatures and phonons at higher tem-
peratures. The higher curves are for purer samples; adapted from [31]. (Right) Thermal
conductivity copper as a function of temperature [56].

are more effective for carrying heat because the number of electrons able to carry heat

is always much larger than the number of excited phonons. This can be seen also from

the temperature dependence of the specific heat; the electronic specific heat increases

linearly with temperature, while the lattice contribution increases proportional to T 3, as

we will see it below.

Electronic thermal conductivity

Following the derivation of Ashcroft and Mermin using the free electron Drude’s

model, we get [18]:

κe =
1

3
Cev

2
F τe =

1

3
CevF le (2.4)

where Ce is the electronic specific heat, vF is the electron velocity and le is the electron

mean free path, l = vτ .

At low temperature the specific heat, C can be expressed as,

C =
1

T

∫ ∞

−∞

dE(− ∂f

∂E
)N(E)E2 (2.5)
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Electron scattering mechanisms ρ(T ) κe(T )

impurities T 0 T

electron-phonon (T < 0.1θD) T 5 T−2

electron-phonon (T > 0.7θD) T T 0

electron-electron T 2 T−1

Kondo effect − lnT -

Tableau 2.1: Temperature dependence of the electrical resistivity, ρ, and the electronic
thermal conductivity, κe, in the presence of various electron scattering mechanisms in a
metal. θD is the Debye temperature of the metal (after [31]).

where f is the Fermi function. Then, the temperature dependence of the specific heat is

directly related to the energy dependence of the density of states of electrons. The pre-

diction of a linear temperature dependence of electronic specific heat for normal metals,

Ce =
π2

3
k2

BN(EF )T , (2.6)

is one of the most important consequence of Fermi-Dirac statistic. N(EF ) is the density

of states at the Fermi surface. Thus, the linear coefficient in the electronic specific heat

(γ = Ce

T
∝ N(EF )) is just proportional to the density of quasiparticles. Later in the

superconducting part, we will see that the generic form of N(E) at low temperatures

depends only on the topology of the surface where the excitation gap is zero. A surface

of gap zeros will lead to a constant density of states, a line of nodes leads to a linear

density of states and a point node leads to a quadratic dependence.

Qualitatively, the temperature variation of the thermal conductivity of a metal can be

explained by considering just the electronic contribution. Fig. 2.1 displays the thermal

conductivity of a metal as a function of temperature along with the electron-scattering

mechanisms responsible for the shape of the curve. At very low temperatures, electrons

are predominantly scattered by impurities or imperfections in the lattice, resulting in a

constant electron mean free path. In this case, the linear temperature dependence of the

specific heat gives rise to a linear increase of the thermal conductivity, κe−impurity ∝ T .

With increasing temperature, the electron-phonon interaction becomes more and more

important, because of the growing number of high-frequency thermal phonons. The

electron mean free path decreases rapidly, with a scattering time for electron-phonon

processes proportional to T−3, more than compensating for the rise that is caused by the
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linear specific heat, and thus the thermal conductivity falls (in a typical metal κe−phonon ∝
1/T 2 ). At higher temperatures, the dominant scattering centers are phonons those with

the Debye frequency. Their density rises linearly with temperature, leading to a electronic

mean free path inversely proportional to temperature, l ∝ 1/T . Thus, the temperature

dependence of the specific heat and the mean free path cancel each other, and the thermal

conductivity becomes almost constant, κe−phonon ∝ constant [56] (See Table 2.1).

Except for these electron scattering mechanisms that can cause resistance to the elec-

tronic heat flow, also electron-electron scattering process is dominant in perfect metallic

crystals. This gives rise to a T 2 dependence of scattering cross-section, a thermal con-

ductivity proportional to 1/T , κ ∝ 1/T , and an electrical resistivity proportional to T 2,

ρ ∝ T 2. In heavy fermion compounds, the electron-electron cross section is enhanced by

the large effective masses and becomes very significant.

The Wiedemann-Franz law

Those metals which are the best electrical conductors are also the best thermal con-

ductors. At a given temperature, the thermal and electrical conductivities of metals are

proportional. This behaviour is quantified in the Wiedemann-Franz Law (WF law):

κ

σT
=
π2

3
(
kB

e
)2 ≡ L0 = 2.45 × 10−8WΩK−2 (2.7)

where the constant L0 is the Sommerfeld value of the Lorenz number. Qualitatively, this

relationship is based upon the fact that the heat and electrical transport both involve

the same free electrons in the metal [18].

This law is very general and is valid if the electronic mean free path determining

the electrical and heat conductivities is limited by the same process. At high tem-

perature, namely for T > θD, scattering processes with large momentum transfer (like

Umklapp processes) limit both the electrical and the thermal conductivity. Therefore

the Widemannn-Franz law is valid. At moderately low temperatures, processes with

small momentum change dominate. These processes cause the energy to change but the

momentum is hardly altered. This leads to a greater degradation of the thermal current

than the electrical current. Consequently, the ratio κ
σT

decreases and differs from Lorenz

number L0 (see more explanation in [162]). Finally at very low temperatures, elastic

impurity scattering dominates both electrical and thermal transport and the WF law is

valid [56].
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Historically, this law was first reported experimentally by Wiedemann and Franz

in 1852. They found that the Lorenz number was the same for many metals at room

temperature. This law is extremely robust as has been demonstrated both experimentally

and theoretically. Experimentally as T → 0, this law has been verified in numerous

materials; in simple metals, in strongly correlated systems like heavy fermion systems

and HTCS, quasi two-dimensional systems or even in quasi one dimensional organic

conductor, and in systems in the proximity of a quantum critical point. However, recently

for the first time a new and unexpected anisotropic violation of the WF law in the normal

state of heavy fermion metallic compound CeCoIn5 at T → 0 has been reported [215].

Lattice thermal conductivity

Here we make a few remarks on the contribution of phonons to the thermal conduc-

tivity of metals. For phonons in the same way as electrons, from simple kinetic theory

the conductivity of phonons is given by [39]:

κph =
1

3
Cphvphlph (2.8)

where Cph is the lattice specific heat, vph is the phonon velocity that assumed to be

temperature independent and lph is the phonon mean free path.

The Debye theory predicts a T 3 dependence for the lattice specific heat at low tem-

peratures, T < θD, [18]:

Cph =
12π4

5
nkB(

T

θD

)3 (2.9)

This leads to a κph−boundary ∝ T 3 if the phonon mean free path is temperature indepen-

dent. This happens when there are no electrons to scatter the phonons at low temperature

and only grain size or sample boundary becomes the dominant scattering process. In this

case, lph becomes temperature independent, given by nearly the cross-sectional area A of

the sample: lph = 2
√

A/π.

In the case of heavy fermion materials where there is high concentration of conduction

electrons, conductivity of phonons are limited by electrons. This leads a scattering rate

with a linear temperature dependence, l ∝ 1/T , leading to a κph−e ∝ T 2. This type

of scattering is also important in the vortex state of a superconductor, so that vortices

are electronic in nature and can scatter phonons strongly. There are other types of
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(a) (b)

Figure 2.2: (a) Ratio of superconducting to normal state thermal conductiv-
ity of aluminum for different purities indicated by the residual resistivity ratio,
RRR=ρ(Room)/ρ(1.2K) [186]. The thermal conductivity calculated for s-wave super-
conductor in BRT theory (solid lines) fits data very well. (b) A comparison between the
behaviour of κ of BCS theory and an unconventional superconductor, UPt3 [97].

scattering that limit the lattice conductivity, like phonon-phonon scattering and different

types of defects (like point defects, dislocations, etc). For a complete review on phonon

conductivity see e.g. [31,36].

2.2 Thermal conductivity in superconductors

Thermal conductivity is a fascinating probe for investigating bulk superconductivity. It

does not vanish in the superconducting state, unlike electrical resistivity. Cooper pairs

do not carry entropy and therefore do not contribute to the thermal transport. Thus,

the thermal conductivity probes the delocalized low energy quasiparticles.

2.2.1 Thermal conductivity in conventional superconductors

The presence of gap in the spectra of s-wave superconductors leads to exponential be-

haviour, ∝ e∆0/T , of all thermodynamic and kinetic quantities at low temperature.

Bardeen, Rickayzen, and Tewordt (1959) calculated the electronic contribution to

the thermal conductivity of a s-wave superconductor, when the dominant scatterers are

impurities. They found an expression for thermal conductivity in superconducting state,

κes ∝ N(E)v2τ , which is exactly equivalent to the normal state expression except for the
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gap ∆(T ) in the quasiparticle spectrum [25]:

κes(T )/κeN =

∫∞

∆(T )
dE E2 ∂f

∂E
∫∞

0
dE E2 ∂f

∂E

, (2.10)

where f(E) = (1 + eE/kBT )−1. For T << Tc this expression reduces to

κes/κeN ∝ (
∆0

kBT
)2e−∆0/kBT . (2.11)

These calculations agree well with measurements on a variety of conventional super-

conductors; see one example in Fig. 2.2(a). In this figure, BRT theory with the standard

BCS value for the gap with 2∆(0) = 3.52kBTc provides an excellent agreement with the

experimental data of three samples of varying impurity concentration [186]. κes rises

exponentialy and has only 1-2 % of its normal-state value at 0.2 Tc (Fig. 2.2(a)).

Here it is instructive to compare the BRT theory with the thermal conductivity of

an unconventional superconductor UPt3, displayed in Fig. 2.2(b), where κb, the in-plane

heat transport, is plotted vs reduced temperature T−
c . Because the theory does not

include any inelastic scattering, the comparison should be made in the elastic regime

below about Tc/4 [97]. In that regime, obviously there is no consistency between data

and the theory.

2.2.2 Thermal conductivity in unconventional superconductors

The presence of nodes in the spectrum of elementary excitations leads to considerable

changes in the thermodynamic properties of superconductors at low temperature. On

the contrary to conventional superconductors, in superconductors with the gap nodes

at the Fermi surface, the temperature dependence of thermal conductivity and other

thermodynamic quantities follow a power law. Table 2.2 shows the power law dependence

of some physical quantities in an unconventional superconductor.

In the mid-1980s, several authors generalized the standard BRT theory to apply it

to unconventional order parameters [85, 190, 17, 16]. They neglected inelastic electron-

electron scattering and assumed isotropic (s-wave) scattering off impurities, which is

treated either in the Born limit of weak scattering (scattering phase shift 2 δ = 0) or

in the unitarity limit of strong scattering (δ = π/2). Two types of calculations were

2The phase shift between the incoming and scattered electronic waves.
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Line node Point node

Specific heat CV T 2 T 3

NMR relaxation rate 1/T1 T 3 T 5

Thermal conductivity κ T 2 T 3

Penetration depth 1/λ2
‖ T 3 T 2

Penetration depth 1/λ2
⊥ T T 4

Tableau 2.2: Power-law dependences for various quantities in low temperature regime.
These laws hold for a clean superconductor with linear dispersion of the gap at the
nodes [97].

performed: self-consistent calculations which include the pair-breaking effect of impurity

scattering [85,190] and those which neglect this effect [16,17]. The effect of pair breaking

shows up at temperatures below an energy scale γ, called the impurity bandwidth, which

depends on the normal-state scattering rate, Γ. The value of γ depends strongly on the

phase shift; it is highest for unitarity scattering, γ =
√

~ΓkBTc. The main feature of

that regime, which is called gapless regime, is the presence of a residual normal fluid of

zero-energy quasiparticles at T = 0.

Much of the discussion of the results in this work will focus on low and zero tem-

perature results where kBT << γ, and γ is the dominant energy scale. This is defined

as the dirty limit, and the case where kBT >> γ as the corresponding clean limit (see

Fig. 2.5(a) in this regard).

Here, before moving to look at the thermal transport theories in detail, we take 2D

d-wave gap as our basis for the following formalism introduced by Lee (1993) [118]. When

the gap approaches to zero at the Fermi surface, we can only concentrate on the nodal

region where the density of sates is finite and neglect the structure ∆k away from the

node. In other words, this is allowed to linearize the gap spectrum around the node.

Quasiparticle excitations is then described by the Dirac spectrum:

Ek =
√

ξ2
k + ∆2

k = ~

√

(vFk1)2 + (v2k2)2 (2.12)

where k̂1 is perpendicular to the Fermi surface and k̂2 is tangential to it. vF is the

Fermi velocity and v2 is the second velocity that emerges as the slope of the gap at the

node, S = d∆
dk

= ~kFv2. For a d-wave gap this slope is given by S = ∆0/2. Thus the

quasiparticle energies are confined to a cone.

In the clean limit (T > γ) and dirty limit (T < γ) the expressions for the density of
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N(E)

Full gap 0
Surface of zeros constant
Line node E
Quadratic point node E
Linear point node E2

Tableau 2.3: Low temperature dependence of the density of states, N(E) in supercon-
ductors.

states are given by:

Ns(E) =
2

π~2

E

vFv2

∝ E (T > γ) (2.13)

and

Ns(E) =
γ

π2~vFv2

(T < γ) , (2.14)

respectively. It has been predicted the finite density of sates at zero temperature in the

dirty limit, Eq. (2.14), leads to universal charge transport, which is given by:

σ0 =
e2

π2~

vF

v2

∼= e2NFv
2
F τ∆ , (2.15)

with the universal scattering time τ∆ ∼= ~

π∆0

. This universal charge transport is a conse-

quence of the d-wave gap being linear at the node and is independent of the scattering

rate of quasiparticle excitations.

The linear energy dependence of density of states in the superconducting state,

Eq. (2.13), leads to power law dependence of many physical properties instead of ac-

tivated behaviour for s-wave superconductors. For instance, this relation provides an

electronic specific heat Ces ∝ T 2. The linear energy dependence of density of states is

obtained for line node and quadratic point nodes; Ns(E) ∝ E. For linear point nodes we

have Ns(E) ∝ E2 (see Table 2.3 for a summary).

Returning back to our discussion on thermal conductivity, neglecting the pair-breaking

effect of impurities and assuming isotropic scattering, Arfi and Pethick (1988) calculated

the two components of κ, namely, κzz ≡ κc and κxx ≡ κa = κb, for three generic gap

structures: the polar (∆(θ) ∝ cos θ), the axial (∆(θ) ∝ sin θ), and the so-called ”d-wave”
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Figure 2.3: Normalized thermal conductivity along (ZZ) and perpendicular (XX) to
the c-axis in the Born and unitarity limit for axial, polar and hybrid gap symmetries [17].

gap (∆(θ) ∝ sin θ cos θ) (this is hybrid gap that was introduced in the introduction chap-

ter), on a single spherical Fermi surface for a scattering phase shift close to 0 up to π/2.

Their results are shown in Fig. 2.3. Two basic features emerge: (1) heat conduction

is always much better along the direction of nodes and (2) qualitative agreement with

experimental data is not possible in the Born approximation, which is seen to lead to

large values of κ/T at T → 0 in the nodal directions, comparable in magnitude to the

normal-state value. The necessity of large phase shifts, close to π/2, was first predicted

by Pethick and Pines (1986) [172] 3. It has since become an assumption in the descrip-

tion of superconducting properties in all strongly correlated electron systems. In a later

work, Arfi et al. [16] investigated the effect of an arbitrary phase shift on the thermal

conductivity. The motivation for this justification was that an impurity added to the

system is replaced for a magnetic or non-magnetic atom. So this gives a large or near

zero phase shift. Thus an intermediate phase shift might be expected. The result for

hybrid gap symmetry is given in Fig. 2.4.

For the gap symmetries considered in Fig. 2.3 and Fig. 2.4, the heat anisotropy is

strong. For example, the ratio of heat conduction parallel and perpendicular to the c

axis, κzz/κxx, goes to zero for a polar gap and to infinity for an axial gap, as T →
0. This implies that a measurement of transport anisotropy can be a powerful way of

3It was shown [172] multiple interactions of a quasiparticle with an impurity, which corresponds to a
large phase shift in the normal state, leads to a good agreement between temperature dependence of the
transport coefficients in the superconducting state with the experimental data. The motivation for the
large phase shifts arises from the fact the f electrons of Ce or U atoms in the heavy fermion materials,
are thought to be responsible for the heavy electron behaviour. When non-magnetic impurities are
introduced, it is possible to replace an f electron atom. The impurity then corresponds to the absence
of a magnetic site, and thus it gives rise to a phase shift close to π/2. In the case when the impurity
replaces one of the other atoms, the phase shift is likely to be small.
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Figure 2.4: Normalized thermal conductivity vs reduced temperature for different phase
shifts for the c-axis (ZZ) and ab-plane (XX) current directions of hybrid gap, Eg [16].

distinguishing between candidate gap structures.

The lack of self-consistency, neglecting anisotropy of the Fermi surface and inelastic

scattering in Arfi’s calculations, which are known to be important for a comparison with

experiment, motivated further calculations, which were performed by Fledderjohann and

Hirschfeld [60], Norman and Hirschfeld [155], Graf et al. [72, 74], and Hirschfeld and

Putikka [87].

Fledderjohann and Hirschfeld (1995) [60] considered the self-consistent treatment of

impurity scattering and found a gapless behaviour for E1g (hybrid gap), absent in the

theory of Arfi [16]. They showed that there is a distinct difference between the two

hybrid gaps E1g and E2u symmetries. Indeed, while the anisotropy ratio tends to zero

as T → 0 for the former, it remains finite for the latter (it is indeed unchanged below Tc

for a spherical Fermi surface) (see Table 2.4 in this regard). This is a consequence of the

difference in the gap at the point node between the two structures, namely, ∆(θ) ∝ θ vs

θ2 [which leads to Ns(E) ∝ E2 vs E]. It appears that no other physical property is as

sensitive to that topological difference [97]. In Chapter 5, we make a comparison with

this theory and our experimental data.

In general, κ(T ) is expected to depend on the complex topology of the Fermi surface

and one must go beyond a model with a spherical Fermi surface. However, as argued

by Graf, et al. [72] and Barash and Svidzinsky [23, 22], at sufficiently low temperature

only a knowledge of the topology of the gap at the nodes is needed, and the low energy

spectrum can be determined accurately, without complete knowledge of the Fermi surface.

Norman and Hirschfeld [155] and Graf, et al. [72] have performed this and found an

excellent agreement with experiment at low temperatures. However, because the theory is
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Gap Nodes States κc/κb

S wave None A1g 0
Axial I LP E1u(1, i) ∞
Axial II QP E2g(1, i) ∞
Polar Line A1u 0
Hybrid Line + LP Eg(1, i) 0
Hybrid I Line + LP E1g(1, i) 0
Hybrid II Line + QP E2u(1, i) 1

Tableau 2.4: The gap structure of a few uniaxial states (for strong spin-orbit coupling
and ellipsoidal Fermi surface), and the limiting value of the anisotropy ratio κc/κb ex-
pected as T → 0, in the absence of gapless behaviour. The nodal structures include a
gap going to zero at a point along the c axis, either with a linear (LP) or a quadratic
(QP) k dependence, and along a line in the basal plane [127,60,187].

simplified in its treatment of electron-electron scattering, the comparison with experiment

should be done only in the elastic regime. A direct comparison with Graf findings and

our experimental data will be provided in Chapter 5.

In a brief, in spite of lots of work and efforts on calculation of thermal conductivity in

unconventional superconductors, but still there is no good agreement between theory and

experiment, especially on heavy fermion compound, may be because of their complicated

band structure.

2.3 Disorder effects in unconventional superconduc-

tors

Adding of non-magnetic impurities in a nodal superconductor strongly affects the low

energy transport and thermodynamic properties. In contrast, in conventional supercon-

ductors the nonmagnetic impurities have no influence on physical properties (Anderson’s

theorem [9]) and also the critical temperature is independent of the concentration of non-

magnetic impurities. In s-wave superconductors superconductivity is suppressed only by

magnetic impurity scattering, which destroys the coherence of the electron spin states

and leads to a gapless superconductor [3,132]. In a nodal superconductor, a finite concen-

tration of non-magnetic impurities leads to Andreev states with a bandwidth, γ << ∆0,

deep in the superconducting state, below which the density of states is non-zero and

almost constant, as shown in Fig. 2.5(a). This is only true for unitary scattering. In
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Figure 2.5: The effect of impurities on the density of states of a d-wave superconductor
(a) in unitary and (b) Born scattering limits [136,178]. In unitary scattering, the density
of state at zero energy increases as impurities are added. In Born scattering, the linear
density of state, N(E) ∝ E slightly changes slope. γ denotes the energy scale at which the
density of states becomes constant in energy. Solid lines are for scattering rate Γ/∆ = 0.

this figure, even a small amount of impurities creates significant low-energy excitations

and decreases the peak normally observed at E = ∆. The results obtained for a d-wave

superconductor are similar to recently reported calculations for nodal heavy fermion

PrOs4Sb12 [171] and E2u gap symmetry [236].

Universal heat transport

This novel metallic band, deep in the superconducting phase, can exhibit universal

values for the transport coefficients at very low temperature, kBT << γ, i.e., independent

of the impurity density or scattering phase shift. This universality can be understood as

the cancellation of an increase in Ns(0) ∝ Γ induced by adding disorder and a decrease

in the scattering time, τ ∝ 1/Γ, by the same disorder, so that κ0

T
∼ Ns(0)

Γ
∼ constant.

Universality in the thermal transport at the temperatures approaching zero has been

predicted by Graf et al. [74] for certain gap topologies (Later Durst and Lee calculated

it for d-wave superconductors [53]). For line nodes, it is given by:

κ0‖

T
=
π2

3
k2

BNFv
2
F

a~

2µ∆0

(2.16)

and for quadratic point nodes, a gap opening up quadraticaly with angle at the position
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(c)

Figure 2.6: (a,b) The in-plane thermal conductivity vs temperature for unconventional
superconductors in the unitary limit (σ = 1) with a dimensionless scattering rate α =

1
2πTc0τc0

= 0.01. The different pairing states are: (i) dx2−y2 (ii) polar (iii) hybrid I, and (iv)
hybrid II state. For comparison the result for an isotropic BCS superconductor is shown
(adapted from [68]). Note the finite intercept of κ/T for the unconventional pairing states
(i) - (iv) [74]. (c) A comparison between normalized thermal conductivity of UPt3 and
calculated ones for E2u-state with a scattering rate Γ(Tc) = 0.02πTc0, in resonant and
Born scattering limits [72].

of the point nodes, ∆(θ) ∝ µ‘
point∆0θ

2 (e.g., in hybrid II) is given by :

κ0⊥

T
=
π2

3
k2

BNFv
2
F

~

2µ‘
point∆0

, (2.17)

where κ0‖/T (κ0⊥/T ) is the residual in-plane (inter-plane) conductivity in the universal

impurity scattering limit kBT < γ << ∆0, NF is the density of state in the normal

state, vF is the Fermi velocity, ∆0 is the maximum value of gap, µ (µ‘
point) is the slope

parameter of the gap at the line node (quadratic point node) and a is a coefficient of the

order of unity which depends on the gap symmetry. Fig. 2.6(a,b) shows the results of the

in-plane thermal conductivity for four pairing states in the resonant scattering limit. All

curves show an identical residual linear term. Fig. 2.6(c) shows a comparison between

the Graf’s calculation and an experimental work on unconventional SC UPt3. It looks

this theory agrees well with the experiments.

Experimentally for the first time universal heat transport was confirmed in the high-



Chapitre 2 : Basic Theoretical Concepts on Heat Transport 30

Tc cuprate YBa2Cu3O7 by Taillefer, et al. [210] and later in the triplet superconductor

SrRu2O4 [209], as shown in Fig. 2.7(a).

The linear point node, where the gap opens up linearly with angle at the position of

the point nodes, ∆(θ) ∝ µpoint∆0θ (e.g., in hybrid gap) does not show universality [74]

(κ0 shows an impurity concentration dependence),

κ0⊥

T
=
π2

3
k2

BNFv
2
F

~γ

µ2
point∆

2
0

. (2.18)

The magntiude is generally much less than κ0‖ (Eq. (2.17)) by a factor of order ( γ
∆0

)
4. Therefore in the case of hybrid gap symmetry, increasing of impurity density would

increase the zero temperature thermal conductivity at the poles, which has been observed

in CeIrIn5, as shown in Chapter 6.

Although Graf assumed a cylindrical or isotropic Fermi surface in his calculations, the

results have been proposed to be more general [74]. Thus, experiments on unconventional

superconductors with controlled impurity concentrations might allow distinguishing var-

ious order-parameter scenarios, depending on whether or not they approach a universal

limit [74].

Further effect of impurities, is the dependence of transition temperature to the im-

purity scattering rate, Tc(Γ). Tc(Γ) is found by calculating the well-known Abrikosov-

Gorkov equation [3]:

ln(
Tc0

Tc

) = Ψ(
1

2
+

~Γ

kBTc0

) − Ψ(
1

2
) (2.19)

where Ψ(x) is the digamma function and Tc0 is the maximum Tc for the disorder free

material. The critical impurity scattering rate, Γc, is given by 0.88Tc0 [207].

Furthermore, note that adding a large amount of impurities will actually destroy

the superconductivity, and the thermal conductivity will also deviate from the universal

constant at large values of Γ. This has been calculated by Sun and Maki [207] and shown

in Fig. 2.7(b). In this figure, κ is shown normalized to the zero disorder limit as a function

of scattering rate.

The impurity effects on Tc and upper critical field of UPt3 compound were stud-

4Quite recently Vorontsov et al. [229] have calculated the thermal conductivity for a hybrid gap
symmetry, considering an open Fermi surface. Then the non universality for zero temperature inter-
plane thermal conductivity obtained as κ0⊥

T ∝ ( γ
∆0

)2
κ0‖

T .
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Figure 2.7: (a) Universal thermal conductivity in a d-wave superconductor YBCO. The
residual thermal conductivity κ0/T plotted as a function of scattering rate Γ [210]. (b)
The correction to the universal thermal conductivity with disorder where ~Γc = 0.88kBTc,
where Γc is the critical scattering rate needed to suppress superconductivity completely
(after [207]). The inset shows a schematic of the same graph with the normal state
thermal conductivity.

ied [117, 204]. Suderow et al. found that the crossing point of the upper critical field

between H‖c and H⊥c in UPt3 moves to the lower temperature with increasing impurity

concentration, which is consistent with the theoretical prediction [43].

Gapless regime - Low temperature corrections

Using the quasiclassical theory, Graf et al. [74] considered finite-temperature correc-

tions to the transport coefficients and calculated κ in the gapless regime (kBT < γ). The

behaviour for in-plane transport is given by:

κ(T )

T
=
κ0

T
[1 +

7π2

15
a2(

kBT

γ
)2] , (2.20)

where κ0 is the residual linear term. The coefficient a is strongly dependent on the

phase shift. For resonant scattering a = 1/2, independent of the specific pairing state.

They found κ/T ∝ T 2 for a- and c- heat current directions in hybrid I and II gap

symmetries [72].
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2.4 Thermal conductivity in a magnetic field

2.4.1 s-wave superconductors

The study of the magnetic-field dependence of thermal conductivity is another way to

test the order-parameter symmetry in superconductors. The usefulness of the magnetic

field as a probe relies on an important difference between the properties of the vortex

state in nodal superconductors compared to s-wave superconductors. While the DOS and

the entropy at low fields, H << Hc2, are determined by the localized states in the vortex

cores in the s-wave case, in the superconductors with nodes they are dominated by the

delocalized quasiparticle states, which exist close to the nodal directions in momentum

space. A qualitative behaviour of the thermal conductivity at low temperatures as a

function of magnetic field for an s-wave and a d-wave superconductor is shown in Fig. 2.8.

In s-wave superconductors the only quasiparticle states present at T << Tc are those

associated with vortices. At low fields where the vortices are far apart, these states are

bound to the vortex core and are therefore localized and unable to transport heat; the

thermal conductivity shows an exponential behaviour with very slow growth with H. At

high fields near Hc2 when the vortices are close to each other, tunnelling of quasiparticle

excitations from core-to-core becomes possible, which leads to a large enhancement of

the quasiparticle mean free path and thermal conductivity. Such a field dependence of

the thermal conductivity is observed in Nb and V3Si [122,102].

2.4.2 Unconventional superconductors

In contrast, in d-wave superconductors, the quasiparticle heat conduction, due to near

nodal states, grow rapidly as soon as the field exceeds Hc1. As pointed out by Volovik

[226], the quasiparticles spreaded outside the vortex cores can participate in the heat

transport at fields just above Hc1 because of the Doppler shift (as explained below) of

the quasiparticle energy spectrum. This leads to immediate increase of κ at low fields,

which is proportional to the density of states N(E = 0, H) ∝
√
H for Hc1 < H << Hc2.

Thus we may expect an increase in κ(H) almost proportional to
√
H, as observed in

several unconventional superconductors [42].

Doppler shift energy

A most remarkable effect of the magnetic field on a nodal superconductor is the
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Figure 2.8: A schematic of general field dependence of the thermal conductivity κ for s
and d-wave superconductors. In s-wave superconductors, the thermal conductivity shows
an exponential behaviour with very slow growth with H [122,102]. In contrast, in d-wave
superconductors, the quasiparticle conduction grows rapidly as soon as the field exceeds
Hc1. The slope of κ(H) at Hc2 depends on purity (from [140]).

Doppler shift of the quasiparticle spectrum [226]. In the presence of a supercurrent with

velocity vs the energy of a quasiparticle with momentum k is Doppler shifted relative to

the superconducting condensate by

ǫ(k) −→ ǫ(k) − ~k.vs . (2.21)

To estimate the characteristic energy scale of the Doppler shift we can approximate the

velocity field by that around a single vortex, vs = ~φ̂/2mr, where r is the distance

from the centre of the vortex and φ̂ is a unit vector along the circulating current. This

expression is valid outside the vortex core and up to a cut-off of the order min{R, λL},
where R = a

√

Φ0/πH is the intervortex distance, Φ0 is the flux quantum and a is a

geometric constant. This energy shift, EH , is calculated by integrating over a unit cell

of vortex lattice with lattice parameter a :

EH = 〈|vs.p|〉 =

∫

|r|<R

d2r

πR2
|p.vs| ∝

4

aπ
~vF

√

H

Φ0

. (2.22)

Recalling the linear in E dependence of N(E) in the clean limit (Eq. (2.13)), the Volovik

effect naturally leads to N(E = 0, H) ∝ EH ∝
√
H. The

√
H dependence of N(H) leads

to a
√
H dependence of specific heat coefficient. Experimentally the Volovik model was
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confirmed in the specific heat studies [145,146,58,233] (In fully gapped superconductors,

this shifted energy is typically very small compared to ∆0 and thus negligible.).

Note that in the Doppler shift model only the quasiparticle energy is shifted, so that

the quasiparticle scattering rate is not directly affected by the presence of the vortices.

In the self-consistent T -matrix approximation, the magnetic field does affect the lifetime

indirectly, by modifying the density of states available for scattering [115,116]. Hence the

Doppler shift method does not include the scattering of the quasiparticles on vortices,

which is important most away from the zero temperature.

In reality, the behaviour of the thermal conductivity is more complex especially at

higher temperatures. While the magnetic field enhances the density of states, it also

leads to suppression in the transport life time both via the impurity scattering and

Andreev scattering off the vortices. In spite of lots of efforts has been done in this

regard [223, 115, 224, 229, 23, 22, 61, 239, 19], the complete picture is not still developed.

In general, at low temperatures-low fields the enhancement of density of states plays the

dominant role, and the thermal conductivity increases with field. At higher temperatures

and low fields, the effect of scattering by vortices also come in. Consequently, the thermal

conductivity initially decreases with field, and goes through a minimum at a finiteH [224].

This behaviour has been observed in high Tc cuprates [114] and also in other systems,

like CeCoIn5, UPd2Al3 and SrRu2O4 [94, 232,93].

In conclusion, we have reviewed the behaviour of the thermal conductivity in metals

and superconductors. The thermal conductivity of conventional and unconventional su-

perconductors was reviewed for H = 0 and in a magnetic field. A review on the effect of

non-magnetic impurity on thermal conductivity of nodal superconductors was given.



Chapter 3

Heavy Fermion CeMIn5 (115 Family)

3.1 General physical properties

After discovery of pressure induced superconductivity in antiferromagnetic CeIn3 with

TN=10K, lots of effort have been done to understand the mechanism of superconductiv-

ity in this compound. On this road, quickly another pressure induced superconductivity

in the antiferromagnet tetragonal version of CeIn3 compound, CeRhIn5 was reported.

These findings suggested that the mechanism forming Cooper pairs can be magnetic in

origin. Following the initial report on CeRhIn5 [81], further investigations have revealed

the existence of superconductivity in the isostructural, ambient-pressure superconductors

CeIrIn5 and CeCoIn5. The most striking thing about CeMIn5 compound is the rich va-

riety of ground states, proximity or coexistence of superconducting and magnetic ground

states, similar to the high-Tc cuprate. Here a summary of a few physical properties of

CeMIn5 is given.

The family of Ce-based heavy fermion compounds CeMIn5 in which M is a transition

metal, M=Co, Rh or Ir [173], crystallizes in the tetragonal HoCoGa5 structure consist-

ing of the conducting CeIn3 layers separated by MIn2 layers stacked sequentially along

the tetragonal c-axis (Fig. 3.1). The parent compound of this family, CeIn3, has cubic

crystal structure. At ambient pressure, it is an antiferromagnet with an ordering vector

Q=(0.5,0.5,0.5), while at the critical pressure Pc=2.55 GPa, it becomes superconducting

with Tc ≈ 0.2K [139]. Recently, the unconventional nature of superconductivity in this

compound has been confirmed from the lack of the coherence peak in the 115In-NQR

35



Chapitre 3 : Heavy Fermion CeMIn5 (115 Family) 36

Ce M In

CeIn3

  MIn2

Figure 3.1: Crystal structure of CeMIn5.

measurement 1 [104]. The related material CeRhIn5 is quasi 2D and has relatively high

Tc = 2.1K, under pressure. This comparison indicates that the dimensionality is one of

the important factors for the occurrence of unconventional superconductivity [235]. Ef-

fect of dimensionality on Tc has been already discussed for the spin-fluctuation mediated

superconductivity. Both in the phenomenological models [152, 147] and in the micro-

scopic calculations [213], it has been shown that the magnitude of Tc is higher in quasi

2D systems than in 3D systems2. It seems the relation between Tc and ratio c/a in 115

family obeys the above model (see Fig. 3.2), although it is still not clear that what role

dimensionality plays in determining the varying ground states in this material. Lattice

parameters and ratio c/a of CeMIn5 compound through the transition metal series are

a = 4.614, 4.652, 4.6662 Å, c = 7.552, 7.542, 7.5168 Å so that c/a = 1.637, 1.621, 1.610

for M = Co, Rh and Ir, respectively.

Consistent with the layered description of the crystal structure, electronic structure

calculations reveal a quasi two dimensional (open along the c-axis) character of the Fermi

surface that has been confirmed by de Haas-van Alphen (dHvA) measurements [129,78].

While the 115 materials show small anisotropy nearly 2-3 in the electrical resistivity, much

more isotropic than, e.g., high-Tc cuprate, they show a dominant warped cylindrical Fermi

surface, with significant f -electron weight, in their band structure. A representative

1an anomalous temperature dependencies of the electrical resistivity already has been reported [139].
2In fluctuation models it has been predicted with increasing three-dimensionality on the energy

dispersion, the AF phase is stabilized owing to the suppression of the fluctuation, and the SC phase
shrinks. Moreover, the total weight of the spin fluctuations decreases with increasing the dimensionality
[152,147,213].
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Figure 3.2: Superconducting transition temperatures as a function of tetragonal lattice
parameters c/a for various Ce- and Pu-members of the CeMIn5 and PuMGa5 families.
The relative dependence of Tc on c/a is nearly identical for both families [184].

calculation of the Fermi surface of CeIrIn5 is shown in Fig. 3.3 [78]. Calculation using

the relativistic linear augmented plane wave method (FLAPW) within the local-density

approximation in the itinerant 4f electron band model have reported an almost identical

Fermi surface for CeCoIn5 and CeIrIn5 [129]. This study conclude that any difference

between these two compounds must arise on a small energy scale that would not affect

the band structure calculation. Although, it is generally accepted that the Fermi surface

in CeMIn5 has several cylindrical 2D and spherical 3D sheets, as shown in Fig. 3.3,

associated with three to four bands crossing the Fermi surface [78]. The multiband

effects may appear in physical properties, e.g. in the superconducting state.

In the case of CeRhIn5, the reported band structure compared to the angular de-

pendence of various dHvA frequencies has shown a similar Fermi surface to ones for the

non-magnetic compound LaRhIn5 (no f electron). This suggests that the f -electrons in

CeRhIn5 are localized, in contrast to their itinerant behaviour in CeCoIn5 and CeIrIn5

[195,8].

The electronic specific-heat coefficient γ of CeMIn5 compound is large which confirms

heavy fermion behaviour of this family. This coefficient increases through the transition

metal series from γ(Tc) =350 mJ/molK2 for M=Co [241] over γ(TN) ∼ 420 mJ/molK2

for M=Rh [81] to γ(Tc) =720 mJ/molK2 for M=Ir [173]. In contrast, the La analogues
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Figure 3.3: Fermi surfaces of CeIrIn5 [78].

are Pauli paramagnets with γ of about 5 mJ/molK2 [173].

CeIrIn5 and CeCoIn5 are superconductor at ambient pressure with transition temper-

atures Tc = 0.4K [173] and 2.3K [174] respectively. A strange behaviour is observed in

CeIrIn5. As shown in Fig. 3.4 the resistivity drops to zero at about Tc ρ = 1.2K ∼ 3Tc bulk,

while the thermodynamic and magnetic signatures of superconductivity appear at much

lower temperature. The origin of this observation still is not clear though filamentary

superconductivity was suggested [34] 3.

In the normal state of CeIrIn5 C/T weakly increases as temperature approaches Tc,

which could be consistent with Fermi-liquid behaviour; however, in this temperature

range, the electrical resistivity in not quadratic in temperature, as expected for a Landau

Fermi liquid, but increases as ρa ∝ T 1.25 [173]. Furthermore, in a high magnetic field much

larger than Hc2(0), C/T tends to approach a logarithmic divergence at low temperatures

[38]. This study of the field dependence of C/T suggests that there should be a field

induced quantum critical point near H = 25T, which is where a metamagnetic transition

[108] in CeIrIn5 also extrapolates to T = 0.

The third member of this family CeRhIn5, is an antiferromagnet with ordering tem-

perature TN = 3.8K [81,21]. Small magnetic Ce moments (0.26µB at 1.4K) form a helical

spiral along the c-axis and are antiparallel for nearest-neighbour pairs in the tetragonal

3Josephson effect has been investigated on an SNS‘-type weak link with S=CeIrIn5, N=Cu and
S‘=Nb [206] in order to shed more light on the peculiar behaviour of the resistivity in comparison with
bulk superconductivity. Indeed, a Josephson critical current Ic was observed below the temperature
Tc ρ, where the resistivity of the sample drops to zero, i.e., well above bulk Tc bulk. The result confirms
the presence of a superconducting state above Tc bulk and possible phase coherence between CeIrIn5 and
Nb, at least at the surface of CeIrIn5 [68].
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Figure 3.4: Specific heat divided by temperature C/T (circles, left ordinate), ac suscep-
tibility χac (triangles, arbitrary units), and electrical resistivity ρ (squares, right ordinate)
of CeIrIn5 as a function of temperature (from [173]).

basal plane [21].

Recently superconductivity with a transition temperature above 18K was reported

in isostructural Pu compounds, PuCoGa5 [183, 185] (The related compound PuRhGa5

has Tc = 8.6K [231]). Inspite of the structural similarity with the Ce-based compounds,

PuCoGa5 exhibits only a modest quasiparticle mass enhancement, indicated by specific

heat measurements [28]. Furthermore, in both Co compounds the electrical resistivity

shows non-Fermi-liquid behaviour with a T 1.35 power law for PuCoGa5 and a nearly linear

behaviour for CeCoIn5. The origin of superconductivity with relatively high transition

temperature in this compound is still not clear. However, it has been argued that it might

be attributed to increased hybridization of the Pu 5f electrons compared to the more

localized Ce 4f electrons, and that the superconductivity is most likely spin-fluctuation

mediated [183].

In the following we review published studies of the order-parameter symmetry in

superconductors CeCoIn5 and CeIrIn5.

3.2 Gap symmetry

3.2.1 Nodal structure

Specific heat
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(a) (b)

Figure 3.5: (a) Electronic specific heat and (b) thermal conductivity of CeIrIn5 mea-
sured by Movshovich et al. [150].

Specific-heat measurements reveal C(T ) ∝ T 2 for both compounds, down to low tem-

perature (below Tc/3) [173, 174, 89, 150]. The T 2 electronic specific heat is an indication

of the presence of line nodes in the superconducting gap. In addition, a residual linear-T

contribution in CeIrIn5 and CeCoIn5 was attributed to an impurity band that form the

nodes (see Fig. 3.5(a)).

Thermal conductivity

There are a few thermal conductivity studies for CeCoIn5 but so far only one in-plane

thermal conductivity study reported on CeIrIn5
4 [150, 94, 217]. For both compounds a

residual κ/T for T → 0 have been reported. Based on the existence of power law behav-

iour in κ(T ) in the superconducting state, the presence of line nodes in both compounds

was reported. Further information on the nodal structure of CeCoIn5 by field-angle

dependent thermal-conductivity measurements show fourfold symmetry consistent with

nodes along the (±π,±π) positions [94]. Field-angle dependent measurements of the spe-

cific heat aslo support a fourfold symmetry but disagree on the location of the nodes [13].

Recent theoretical analysis suggested that, when the redistribution of the spectral density

due to the vortex scattering is accounted for, the specific heat is also consistent with the

4During doing corrections on my thesis, Kasahara et al. [100] measured in-plane thermal conductivity
of CeIrIn5 down to temperature 0.15K. The temperature dependency and the residual linear term are
nearly in agreement with our data. Later we make a complete comparison between their data and ours
in Chapter 7.
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Figure 3.6: Temperature dependence of 1/λ2
ab in (a) CeIrIn5 and (b) CeCoIn5. Solid

lines indicate the power-law relation determined by fitting and dashed lines indicate the
cases n =2 (line-node with impurities scattering) and n =4 (BCS case) [84]

dx2−y2 gap [229].

Recent thermal conductivity measurements on CeCoIn5 show also the presence of

uncondensed electrons in the superconducting state [217].

Penetration-depth

Penetration depth measurements have been performed by several groups either by

µSR [84] or microwave measurements [158, 161, 41]. The magnetic penetration depth

λab and its temperature dependence was deduced by transverse field µSR measurements

with field applied parallel to the c-axis. For CeIrIn5 a magnetic penetration depth λab
∼=

6700A0 was estimated, similar to that for CeCoIn5 with λab
∼= 5500A0. A power law

temperature dependence of ∆λ−2
ab = λ−2

ab (0) − λ−2
ab (T ) with exponents n = 3 ± 0.4 for

CeIrIn5 and n = 3.3 ± 0.4 for CeCoIn5 was seen. The exponents deviate from the T 4

and T behaviours expected for an isotropic s-wave superconductor and for an order

parameter with line nodes in the clean limit, respectively [234]. It was argued that

impurity scattering [169] can cause the deviations from the linear dependence of the

superfluid density at low temperature, although the impurity effect changes the linear-T

dependence only into a T 2 dependence (see Fig. 3.6) [68].

3.2.2 Parity and spin state

Upper critical fields

Upper critical field measurements can probe the spin state of the Cooper pairs. The
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(a) (b)

Figure 3.7: Temperature dependence of Hc2 measured in CeIrIn5 by (a) resistivity and
(b) magnetic susceptibility [195].

upper critical field of CeCoIn5 has been determined by measurements of the specific heat

and thermal expansion. Both indicate a change from a second-order transition at Hc2

at fields below 4.7 T to a first-order transition [35], as can be revealed by a step in the

H dependence of the thermal conductivity, magnetization and specific heat [94,218,35].

It was interpreted that the first-order superconducting phase transition is due to Pauli

limiting [218]. The observation of Pauli paramagnetic limit is a direct evidence of a spin

singlet pairing [68] 5.

Regarding CeIrIn5, the upper critical field Hc2 was measured only by temperature and

field dependence of the electrical resistivity and ac susceptibility (see Fig. 3.7) [195,173].

The factor nearly 2 anisotropy of Hc2 with respect to field orientation has been attributed

to the anisotropy in the electronic system [195].

Nuclear spin resonance

Nuclear quadrupolar resonance (NQR) measurements show no Hebel-Slichter peak

just below Tc in either compound, consistent with unconventional superconductivity [112,

243, 47]. Below Tc the spin susceptibility is suppressed, indicating singlet pairing. For

CeIrIn5 the nuclear relaxation rate follows a 1/T1 ∝ T 3 down to 50mK [112] (see Fig. 3.8)

compatible with a line-node gap [243]. As we showed in previous chapter, the linear

increase in energy of the density of states, N(E) ∝ E, gives rise to the T 3 variation of

5The first order transition at low temperatures has also been linked to the possible presence of a
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase [32].
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Figure 3.8: Temperature dependence of the 115In nuclear spin-lattice relaxation rate of
CeIrIn5. The solid line is a calculation assuming the gap model ∆(φ) = ∆0 cos(φ) with
2∆0 = 5.0kBTc and the BCS temperature dependence of the gap (from [243]).

1/T1 at low T. However, NQR measurements on CeCoIn5 [112] do not show the T 3 low-

temperature behaviour; instead 1/T1 saturates below 0.3K probably due to paramagnetic

impurities [112] or uncondensed electrons [217], which mask the intrinsic quasiparticle

contribution.

3.2.3 Energy gap

Point-contact spectroscopy measurements have been performed only on CeCoIn5 to study

the order parameter symmetry through the mechanism of Andreev reflection. A d-wave

order parameter, with dx2−y2 symmetry [170, 68] and multi-band effects [182] have been

concluded.

3.2.4 Flux line lattice

The flux-line lattice of CeCoIn5 has been imaged using small angle neutron scattering

experiments [57]. At low magnetic fields a hexagonal flux-line lattice has been reported.

With increasing applied field the flux-line lattice undergoes a transition to square sym-

metry at about 0.6 T. This is consistent with the theoretical expectation for the dx2−y2

symmetry. Theoretically, d-wave pairing is expected to stabilize a square flux-line lattice,
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Figure 3.9: General phase diagram of Ce(Co, Rh, Ir)In5 alloy. Hashed areas correspond
to regions of coexisting AFM and SC orders. The phase labeled ’?’ may not be intrinsic
but due to chemical phase separation. Fig taken from [184], after [167].

which was observed in the high-Tc superconductors [65] 6.

Summary

Here, we have summarized some of the evidence that points toward an unconven-

tional pairing mechanism in CeCoIn5 and CeIrIn5. In spite of lots of measurements on

CeCoIn5, however, the order parameter and gap structure of CeCoIn5 are far from solidly

established. While most measurements agree to the presence of nodes in the gap, there

is a lively controversy as to the actual order parameter (whether dx2−y2 or dxy, for exam-

ple) and the origin of uncondensed electrons [217] (whether due to gapless regions [26],

multi-band scenario [217] or quantum criticality [242].). An order-parameter with dx2−y2

symmetry is reported as the most prominent candidate for CeCoIn5 probably implying

that the antiferromagnetic spin fluctuations are important for superconductivity. The

angular dependence of the thermal conductivity, the power laws in various properties

and the point-contact data support a d-wave order-parameter symmetry.

Regarding CeIrIn5, so far there is no direct evidence of gap symmetry. The limited

experimental situation points to a d-wave gap, the same as for the isostructural compound

CeCoIn5.

6However, it has been argued that the orientation of the square vortex lattice in tetragonal crystals
may not serve as a conclusive test for the position of gap nodes, and that the low-field vortex lattice is
consistent with dxy symmetry as well [68].
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3.3 More physical properties

3.3.1 Chemical tuning and phase diagrams

Pagliuso et al. [167] were the first to map out the phase diagram of single phase crystals of

Ce(Rh,Ir,Co)In5, revealing the rich interplay between superconductivity and magnetism

in the 115 system (see Fig. 3.9).

Ir-substitution for Rh in CeRhIn5 decreases the magnetism and introduces supercon-

ductivity. As shown in Fig. 3.10, antiferromagnetic order coexists with superconductivity

for intermediate Ir concentrations in CeRh1−xIrxIn5 compound. In this region neutron-

scattering studies reveal a change in the ordered magnetic structure [120] from incommen-

surate antiferromagnetism in pure CeRhIn5 [21, 121] to coexistence of incommensurate

and commensurate antiferromagnetism in this region. In further Ir concentrations, Tc

vanishes near CeRh0.1Ir0.9In5. The observation of these two superconductivity domes,

one coexisting with the AFM ground state and another far away from magnetism, sug-

gests the possibility of two kinds of superconductivity in this family 7. Moreover, recent

NQR measurements under pressure on pure CeIrIn5, as the system is away from the AFM

seen in Fig. 3.10, shows Tc goes up with the pressure while the size of energy gap remains

constant. The interesting point is that superconductivity emerges without any trace of

AFM spin fluctuations [105].

Pressure study of CeRh1−xIrxIn5 compound in Fig. 3.10 provides more information in

this regard and helps to find the characteristic differences between CeCoIn5 and CeIrIn5

superconductors. Pressure further separates CeIrIn5 from antiferromagnetism, or in other

words, separates the two SC domes. A similar evolution from antiferromagnetism to

superconductivity, occurs for CeRh1−xCoxIn5 [241, 156]. Fig. 3.11 shows a comparison

between two materials CeRh1−xIrxIn5 and CeRh1−xCoxIn5
8. These two phase diagrams

7The first observation of two dome superconductivity in heavy fermion material has been reported as a
function of pressure on CeCu2(Si1−xGex)2 [240]. One dome (SC1) is formed around the antiferromagnet
QCP, whereas another one (SC2) emerges under the heavy fermion state without any signature for
AFM spin fluctuations. Interestingly, a maximum Tc in SC2 as the function of pressure is higher than
that in SC1. Although a possible origin of SC2 is not yet known, a new type of pairing mechanism
is suggested to mediate the Cooper pairs in HF systems besides AFM spin fluctuations. For instance,
valence fluctuations of Ce ions may be responsible for the onset of SC2 via the increase of hybridization
between conduction electrons and Ce-4f electrons [240,157,143,105].

8The T − x phase diagram for CeRh1−xCoxIn5 shown in Fig. 3.11(a) was determined by the neutron
diffraction, specific heat and resistivity measurements [156]. The incommensurate AFM order, which is
observed in the pure CeRhIn5 system, appears below x = 0.3 and is absent at x ≥ 0.4. The SC state is
not observed down to 0.7K at x = 0.2, while it suddenly appears at x ≈ 0.3. The commensurate AFM
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Figure 3.10: Evolution of the phase diagram of CeRh1−xIrxIn5 with applied pressure.
This evolution suggests the possibility of two superconducting (SC) phases. Taken from
[184], after Nicklas et al. [153].

show some similarity: (1) simultaneous appearance of the superconductivity and AFM

order at low x; (2), coexistence of superconductivity with the commensurate AFM order

in the intermediate x regime. However, a significant difference also exists: while the

incommensurate AFM order coexists with the superconductivity in CeRh1−xIrxIn5, there

is no intrinsic coexistence of the incommensurate AFM order with the commensurate

AFM order and the superconductivity state in CeRh1−xCoxIn5. This leads to suggest

that the superconductivity is strongly suppressed by the incommensurate AFM order in

the latter system, while they coexist in the former system [156].

To compare the above results to some other experimental results on pure CeRhIn5,

recently specific heat measurements on pure CeRhIn5 under hydrostatic pressure revealed

that the incommensurate AFM order suddenly disappears above a critical pressure p∗c ≈ 2

GPa where a bulk SC phase sets in [110]. On the other hand, NQR experiments have re-

vealed a magnetic transition from incommensurate to commensurate at 1.67 GPa, where

superconductivity comes in. Therefore, the absence of any coexistence of incommensurate

AFM order and superconductivity seems to be a common feature in the CeRh1−xCoxIn5

system and CeRhIn5 under pressure [156].

order simultaneously appears here, and stays on the intermediate x region (0.3 ≤ x ≤ 0.6), together
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Figure 3.11: (a) T −x phase diagram for CeRh1−xCoxIn5 from the neutron diffraction,
specific heat and resistivity measurements. At x=0.2 (solid arrow) and x=0.7 (dotted
arrow), the superconductivity and the AFM order were not observed down to T=0.7K.
(b) A schematic of T − x phase diagram for CeRh1−xIrxIn5 reported in [120, 105]. Fig
adapted from [156].

All these observations so far are consistent with a recent specific heat study of Cd-

doped CeMIn5 compound (see Fig. 3.12) [175]. Adding Cd on the In site, has a dramatic

effect on these materials. While in CeCoIn5 superconductivity is rapidly suppressed with

Cd doping and an ordered antiferromagnetic state emerges in coexisiting with supercon-

ducting state, in CeIrIn5 these two phases are competing. 9 This is the first example of

magnetism appearing close to superconductivity in Ir115 compound, and interestingly,

the magnetic ordering temperature of Cd-doped Ir115 is the highest found among the

Cd-doped Ce115s, close to the TN of the parent compound CeIn3.

In Chapters 5 and 9, we will show that these evidences may support our suggestions

of a different SC gap symmetry and spin fluctuations in the two systems CeCoIn5 and

CeIrIn5.

Conclusion

As regarding CeIrIn5, several recent studies suggest that it may support a different

with the superconductivity.
9The appearance of the magnetic ground state with an ordering temperature that increases with

increasing Cd concentration is common to CeRhIn5 as well [175].
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Figure 3.12: Dependence of superconducting transition temperatures Tc and Neel tem-
peratures TN on x, where x is the Cd content of crystals. (a) CeCo(In1−xCdx)5 and
(b) CeIr(In1−xCdx)5. Tc and TN were extracted from specific heat and confirmed with
magnetic susceptibility and resistivity measurements. The dotted lines are smooth ex-
trapolations to T= 0K [175].

superconducting state, compared to the closely related compound CeCoIn5. Until now,

this suggestion has been based on indirect evidences, e.g. a comparison of magnetic

fluctuation spectra and phase diagram vs alloying or pressure.



Chapter 4

Experimental Techniques

In this chapter a brief review on sample preparation, cryogenic techniques and exper-

imental apparatus, the technique and our thermal conductivity mounts, is given. For

comprehensive information on equipments and the cryogenic techniques developed and

used in the group, please see theses of E. Boaknin and B. Lussier [36].

All measurements for this thesis were performed in a 4He Dipper cryostat and an

Oxford Kelvinox 300 3He-4He Dilution refrigerator. The instruments were delivered in

January 2004 to Sherbrooke, nearly 8 months after my arrival to Canada.

The dilution fridge can reach to nearly 8mK without heat load, but with the thermal

conductivity or electrical resistivity tail can reach to below 50mK for the best conducting

samples with good thermal contacts. The cryostat is equipped with a 17T superconduct-

ing magnet with a compensated region centered on the bottom plate of mixing chamber.

The resistivity measurements can be done in both cryostats and cover the entire temper-

ature range 40mK< T <300K, whereas the thermal conductivity measurements can be

performed in the dilution fridge for 50mK< T <5K and in the dipper for 1.6K< T <100K.

All leads to the tail and the cryostat which are used for measuring simultaneously

the thermal conductivity and electrical resistivity of three samples, are a 24-pin, a 26-pin

and 18-pin connectors. All of the electrical leads are surrounded by a home made low

pass capacitive-inductive filters located at the top of the cryostat. Usually high frequency

electromagnetic waves couple to cold experimental devices via parasitic capacitance in

the wires, which this cause the self heating of the thermometers at low temperatures,

leading to a bad reading of temperatures. The using of the low pass filters eliminates

this problem at low temperatures.

49
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4.1 Sample preparation

One of the important steps in transport measurements especially on highly conductive

115 compound, after growing a good quality sample that definitely is very crucial step

in physics experiment, is how to make a good thermal contact between sample and the

electrical probe wire. Usually a bad contact on highly conductive metals leads to self

heating effects in low temperature resistivity measurements and electron-phonon decou-

pling in low temperature thermal conductivity measurements [162]. Here a summary of

sample preparation for transport experiments is given. For more details and information

the reader is referred to the dissertation of J. Paglione [162].

Single crystals of 115 compound were grown in an In flux method [173]. Because

of the growing method, there is excess indium on the surface of samples. For removing

the excess indium from CeCoIn5 material, for instance, samples are etched in HCl acid

(at least for 30 minutes or until visibly free of In flux on surface) and then cleaned in

a careful way [162]. Actually CeIrIn5 and CeRhIn5 materials show a different reaction

to the acid. It seems the compound can not etch with even a high diluted acid. The

best way for cleaning the surface is first, to cut sample mechanically with wire saw

and second, to polish it to have the shape of parallelepiped. Samples then are washed

with ethanol and immediately prepared for making contact on. It seems the surface of

CeIrIn5 compound is so sensitive to the oxidation in the air. Therefore making all wire-

contacts in a very short time, say in 10-15 minutes, leads a good thermal contact for

the thermal conductivity measurements. The typical dimensions of samples are nearly

∼ 4.5× 0.14× 0.045 mm3 for the a-axis and nearly ∼ 1× 0.15× 0.086 mm3 for the c-axis

samples (In µSR measurements, the samples were cut in typical thickness 0.1∼0.2mm.).

For making four-wire contacts, the same pure Ag or Au wires, with diameter either

12, 25 or 50 µm depending on sample size, soldered with silver-based alloy were used

as contacts for both electrical resistivity, ρ, and thermal conductivity, κ, measurements.

For Co115 samples, the Ag wires were soldered using pure Indium and a aggressive flux

(Kester 2164 water soluble soldering flux) [162]. The indium could wet and attach easily

to the sample surface. However, in the case Ir115 and Rh115 samples, Indium can not

wet on the surface at all. Making a mixture of pure Ag and In was used to bring a

good and strong contact on the surface of these metalic samples. A blue organic water

soluble flux, flux No. 30, is used to improve wetting. See the description of making

the soldering contacts in [162]. Then sample is put in a bath of ethanol for nearly 30
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minutes to remove any residual soldering flux. Finally the sample itself is fixed to a

copper plate which is screwed onto the experimental mount. The soldered contacts have

typical low-temperature resistance of ∼ 5 mΩ.

One of the positive point regarding using silver-based alloy rather than using pure

indium comes as follows. Pure indium is a s-wave superconductor below 3 K (with the

critical field ∼29.3 mT). Since a superconductor is a perfect thermal (electronic) insulator

at zero temperature therefore usually it is difficult to trust zero field data at the lowest

temperatures in the thermal conductivity measurement. Thus one should apply a very

small field nearly 40 mT to kill superconductivity of the indium contacts. Using the

new Ag-In alloy method eliminates the zero-field problem in the thermal conductivity

measurements.

4.2 Cryogenic techniques

4.2.1 4He Dipper

4He cryostat is the simplest form of cryogenic refrigerators, because it is easy to use

and has a fast turn-around time. It is used for measuring of the electrical and thermal

conductivity measurements at high temperature (above 1.6K) and at the first cooling

stage in more elaborate refrigerators as described below. All measurements performed

in vacuum within a sealed can. For cooling system down to 1.6K, after immersing the

dipper in liquid helium and reaching to 4.2K, with continual pumping of 1K pot with a

rotary pump the temperature of liquid helium inside of the pot reduced down to lowest

temperature. Please see details in [36].

4.2.2 Dilution refrigerator

Here we review shortly the principles of operation of the 3He-4He dilution refrigerator.

For more information and details see [176,56].

When a mixture of 4He and 3He is cooled below 0.87K, a phase separation takes

place. The concentrated phase of almost pure liquid 3He floats on top of the dilute phase

consisting of approximately 6% 3He in superfluid 4He. The 3He atoms in the 3He-rich

phase have lower entropy than the 3He atoms in the 4He-rich phase. The cooling process

of a dilution refrigerator takes place in the so called mixing chamber and consists of the

transfer of 3He atoms from the 3He-rich phase into the dilute phase. In order to use this
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cooling mechanism for continues operation one has to remove 3He from the dilute phase

in the mixing chamber and feed it back into the 3He-rich phase. Therefore the 3He has

to be re-injected into mixing chamber.

The center part of a dilution refrigerator is the cold part of the 3He/4He circuit. This

part of the apparatus is located in a vacuum chamber that is immersed into a 4He bath.

It essentially consists of the mixing chamber, the still, counter flow heat exchanger and

1K pot. The circulation of the 3He/4He mixture is driven by pumping the still. The 3He

is pumped out of the lower phase by pumping the still with a power full roots blower.

The still is heated to about 0.7K to increase the efficiency of the pumping. 1 Because

of its higher vapour pressure, 3He predominantly is evaporated from the liquid. Once

it has been pumped, the 3He is cleaned outside the cryostat in a nitrogen trap before

being returned to the cryostat. Further cleaning often takes place in helium trap in the

helium bath. Following this step, the 3He enters the vacuum chamber in a capillary and

is precooled at the 1K pot.

The pressure of the 3He is maintained sufficiently high by using a flow impedance

before the still so that it condenses. After the still, the 3He is led into the counterflow

heat exchangers and then enters the mixing chamber. The return line to the still starts

in the mixing chamber below the phase boundary in the 4He-rich phase. On the way

back to the still, the cold mixture again flows through the heat exchangers and in this

way precools the incoming 3He. Pumping the sill results in a concentration gradient and,

in turn, to an osmotic pressure that causes 3He to flow from the mixing chamber to the

still. This is, of course, only possible if 3He atoms cross the phase boundary in the mixing

chamber, which leads to cooling. With this method, typically a temperature of about

5mK can be produced [56].

For measuring temperature a principal Germanium thermometer (model GR-200A-

30) from Lakeshore is used, which is calibrated from 50mK up to 5K. A ruthenium oxide,

RuO2, thick film resistor calibrated by Oxford was used for lower temperatures, down to

20mK. For taking data at high temperatures for the electrical resistivity measurements,

for instance, while the system is cooling from room temperature, a Cernox thermometer

is used. Temperature controlling was done using a Lakeshore model 370 AC temperature

controller. All controlling thermometers were well attached on the bottom plate of the

1Typical operational temperatures of the still are in the range between 0.6K and 0.7K. Increasing
the temperature much above 0.7K results in an enhanced fraction of 4He in the gas phase and therefore
4He has to be circulate as well. The important point is that the 4He does not contribute to the cooling
process itself [56].
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Figure 4.1: Schematic of a four-probe thermal conductivity setup (not to scale).

mixing chamber in the field compensated area of the magnet.

Electrical current for the magnet was supplied with the PS-120-10 power supply from

Oxford Instruments.

4.3 Thermal conductivity measurement

4.3.1 Basic theory

In analog to DC resistivity measurements, the thermal conductivity technique is a DC

technique which uses a four-probe geometry. A current heat, Q̇, is applied at one end of

a parallepiped shaped sample and the resulting temperature drop ∆T is measured across

the sample (See a schematic in Fig. 4.1). Two thermometers attached at two places along

the length of the sample are used to measure the temperature gradient. The thermal

conductivity is defined as κ = Q̇
α∆T

, where α = A/L is the geometric factor of sample

(L=length, the distance between the two voltage pads on the sample and A=the cross

sectional area of the sample) and ∆T = Thot −Tcold is the temperature gradient. Usually

the typical value for ∆T/T is kept nearly 5%.

Heat losses

This steady-state longitudinal heat transport method can be used if there is no heat

loss through the sample. Bad thermal contacts, for instance, result in losses of heat

through the measuring electrical leads of the thermometers, or along the Kapton support

structure. Furthermore, heat losses through radiation of warm parts in the cryostat 2 or

2For example, if the heater temperature is much higher than the base temperature, heat may be lost
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conduction by residual gas molecules 3 and vibration are other sources of heat leaks that

with considering a careful thermal conductivity experimental design have been reached

to zero. Please see more details in [36].

4.3.2 Low temperature thermal conductivity mount

A schematic of the thermal conductivity measurements setup is shown in Fig. 4.1. The

main components are a heating device, two thermometers and a references thermometer.

The heater is a resistive element which is in the thermal contact with the sample (see

details in [36]). Joule heating will produce an amount of heat equal to Q̇ = RI2 when

a DC electrical current is applied through this resistance. A heat current ranging from

0.1 to 20 µA is provided by an ultra high stability, low noise Keitley 220 or 224 constant

current sources. The heaters used are strain gauges (model SR-4, Type FSM-A6306S-

500-S13C) with a temperature and magnetic field independent resistance of R=5kΩ (two

of them were wired in series to give a resistance of 10kΩ).

The heater is carefully glued to a plate of 50-100 µm thick silver foil with GE varnish

in order to have a good thermal contact. A silver wire (50 or 100mim diameter) is

soldered to the silver foil with non-superconducting solder. The wire is then attached

to the Ag wires attached to the sample with silver paint (Fig. 4.2 shows a schematic of

heater and sample thermometer.).

The thermometers used are RuO2 thick film resistors, which are commercially avail-

able and inexpensive. They are called surface mount chips in the electronics literature

and are used in most electronic devices, because of their high reproducibility, low temper-

ature dependence of their resistance near room temperature and having a low and well

behaved magnetoresistance. 4 A proper thermometer for thermal conductivity measure-

ment has a resistivity of 1 KΩ at room temperature and nearly 7 KΩ at 40 mK. RuO2

chip thermometers are calibrated in situ against a reference Ge thermometer in each run.

The thermometers and heaters are suspended on thin strips of Kapton (7.5 µm thick-

via radiation.
3The only gas that can cause a problem is helium gas since all other substances are solid at the

temperatures in which experiments are performed. The problem with helium is that it can liquefy and
form a superfluid layer between different parts of the dilution fridge or even on the sample itself and short
out the temperature gradient. The only way to prevent this problem is pumping all helium exchange
gas at 4K for at least 12 hours [125].

4RuO2 thick film resistors consist of a mixture of the two conductive compounds RuO2 and Bi2RuO2

together with lead silica glass (PbO-B2O3-SiO2). This mixture is deposited on a Al2O3-ceramic substrate
[56].



Chapitre 4 : Experimental Techniques 55

Figure 4.2: Schematic of thermometer and heater in our thermal conductivity setup in
Dilution refrigerator [162].

ness and ∼ 100µm wideness) from Dupont which are themselves supported by Vespel

posts. 5. The posts are glued to the cupper base with low temperature epoxy.

Electrical contacts to the thermometers are made with coiled 25 µm diameter PtW

wire (with 92% Pt and 8% W). Each coil has an independent temperature dependence

resistance of 100 Ohm. The thermometers Thot and Tcold are measured with a 4-probe

technique by using a Linear Research LR-700 Resistance Bridge operating at 16 Hz 6. LR-

700 instrument sends an ac voltage (the voltage was chosen to be very small to eliminate

any self-heating of the thermometers at lowest temperatures). The voltage drop across

each thermometer is detected at the excitation frequency and converted into a resistance.

This procedure is repeated at each temperature with and without the heat current on.

Therefore we obtain an in-situ calibration of the thermometers and use these calibrations

to obtain the two temperatures Tcold and Thot with the current on. The entire system is

run under Labview program.

5In the new work for making a new thermal conductivity tail, Kelvar was suggested to use instead of
Kapton, because of its very low heat transport; see laboratory report written by Carlos Paz-Soldan in
Louis Taillefer group.

6The LR-700 Resistance Bridge was equipped with a LR-720-8 multiplexing unit, which provides the
ability to measure up to eight separate four-wire resistance measurements sequentially with the same
bridge. This multiplexing unit was essential in taking parallel resistivity measurements of up to six
samples mounted together, and for performing parallel thermal conductivity measurements of up to
three samples mounted together on the Dilution fridge.
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Figure 4.3: Test experiment of the thermal conductivity setup on pure silver wire.
Inset shows the 3% scattering in the data, confirming the high precision of the thermal
conductivity mount [36].

4.3.3 High temperature thermal conductivity mount (T > 1.6 K)

The high temperature thermal conductivity setup has been explained in great details

in [36]. Here a summary is given.

The setup is similar to the mount used for measurements in the dilution refrigerator

for low temperatures. The thermal conductivity is performed between 1.6 K and 100 K

in the 4He cryostat. Main different on the setup is that sample thermometers (Lakeshore

Cernox chips (CX-1030) with R ∼ 5kΩ at T=1.5K 7) and strain gauge heater (R =

5kΩ) are suspended from a fiberglass frame by their measuring wires, which are 12µm

PtW wire 8, instead of the Kapton film and Vespel posts used at low temperatures. A

Cernox thermometer (CX-1050) (R ∼ 30Ω at room temperature) is used as the principle

thermometer for temperature control and sample thermometer calibration.

In the measuring apparatus part, a Lakeshore model DRC93 temperature controller

for measuring and controlling the temperature, two Stanford research SR830 (and SR850)

low frequency lock-in amplifiers for measuring of sample thermometer resistance, and a

Keithley DMM-2000 digital multimeter for measuring the voltage across the strain gauge

heater and thus measuring the heat current applied Q̇, are used for the measurements.

The current to heater is applied using a home-made, low noise constant-voltage source.

7The magnetoresistance of Cernox thermometers (CX-1030) is negligible at the temperatures above
7K. At lower temperatures it also relatively small, less than 10% below H=16T, but large to require a
detailed calibration; maximum error was reported to be 10% [36].

8Each PtW measuring wire has R ∼ 30Ω.
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4.4 Test of mount accuracy

Our thermal conductivity and experimental setup have been used for a long time and lots

of work and efforts have been done for testing accuracy and reproducibility of measure-

ments. The best method to make sure about the accuracy of the thermal conductivity

setup is to test the verification of the Wiedemann-Franz law at low temperatures on

a metallic sample, like gold or silver. Because the setup was designed for measuring

the electrical resistivity and thermal conductivity with the same sample contacts, all

uncertainty in the Lorenz number regarding the geometric factor is eliminated. The

measurements on a silver wire show the high precision of the thermal conductivity setup

within accuracy of 3% (see Fig. 4.3).



Chapter 5

Gap Symmetry in CeIrIn5

The heavy fermion compound CeMIn5 attracts a notable interest as a playground for real-

ization and understanding of magnetically mediated superconductivity. While a number

of experimental studies revealed unconventional superconductivity in two ambient pres-

sure superconductors of the family, CeCoIn5 and CeIrIn5 [150, 112, 94, 243, 13, 182, 217],

the symmetry of the order parameter and associated gap structure have not yet been

firmly identified. In CeCoIn5, the observation of a four-fold anisotropy in the thermal

conductivity [94] and specific heat [13] points to a two-dimensional d-wave gap, although

there is some controversy over its precise symmetry (dx2−y2 vs dxy) [229]. Several theoret-

ical models propose a dx2−y2 state, analogous to that realized in cuprate superconductors,

mediated by antiferromagnetic spin fluctuations [212,154,214]. Since the calculated band

structure and measured Fermi surface of both CeCoIn5 and CeIrIn5 are very similar, and

properties like the specific heat [150] and the NQR relaxation rate [112,243] exhibit the

same temperature dependence in the superconducting state (C/T ∝ T and 1/T1 ∝ T 3),

it has generally been thought that the two superconductors have the same pairing state,

even though their Tc differs by a factor of 6. However, recent experiments now suggest

otherwise, based on the presence of two superconducting domes in the phase diagram

of doped CeIrIn5 materials [153] and observing notable increase in Tc of CeIrIn5 with

pressure, accompanied by suppression of magnetic fluctuations [105].

A powerful way to probe the gap structure and locate the position of nodes around the

Fermi surface is to measure quasiparticle transport as a function of direction, at very low

temperature (T << Tc). In this chapter, we present our thermal conductivity κ data of

the heavy-fermion superconductor CeIrIn5 that was taken on high purity single crystals

as a function of direction, for a current parallel (J ‖ c) and perpendicular (J ‖ a)

58
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to the tetragonal axis, down to temperatures approaching Tc/8. For J ‖ a, a sizable

residual linear term κ0/T is observed, which establishes the presence of nodes in the

superconducting gap. For J ‖ c, on the other hand, κ/T → 0 as T → 0. The precipitous

decline in the anisotropy ratio κc/κa in the superconducting state at low temperature

rules out a gap structure with line nodes running along the c-axis, such as that of the

usual (dxy and dx2−y2) two-dimensional d-wave states.

5.1 Crystal structure

As we mentioned in Chapter 3, CeIrIn5 is a layered material with Lattice parameters

a=4.6662 A◦ and c=7.5168 A◦. The presence of the cylindrical Fermi surface sheet and a

ratio of m∗
ab/m

∗
c ≈ 4-5 of the effective masses between the c axis and the ab planes makes

CeIrIn5 a moderately anisotropic system [78].

5.2 Experimental details

Two samples were used with dimensions ∼ 4.5× 0.14× 0.045 mm3 for the a-axis sample

and ∼ 1 × 0.15 × 0.086 mm3 for the c-axis sample. Their exceptionally low residual

resistivity (at T → 0 and H → 0), ρ0a (ρ0c) = 0.2 (0.5) µΩ cm (obtained from thermal

conductivity), attests to their very high purity. Their bulk transition temperature is

Tc = 0.38 ± 0.02 K and their upper critical field Hc2 = 0.49 T for H ‖ c.
Note in order to estimate the phonon contribution in our samples of pure CeIrIn5,

we measured the in-plane and inter-plane thermal conductivity, κa and κc, of a CeIrIn5

sample doped with La impurities, named Ce1−xLaxIrIn5 with x = 0.2. This level of

doping increases the residual resistivity ρ0 by approximatelely 80 times. With such a

huge increase in elastic scattering, it is reasonable to assume that inelastic scattering

is negligible below 1 K, so that one expects the electronic conductivity to satisfy the

WF law at very low temperature. Therefore the contribution of phonons to the thermal

conductivity of our pure CeIrIn5 samples is entirely negligible below 1 K (see Fig. 5.1).

See more in Appendix C.
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Figure 5.1: The electrical resistivity, ρ, compared with the thermal resistivity, w ≡
ρthermal = L0T/κ, for pure CeIrIn5 sample. At zero temperature the Wiedemann-Franz
law is satisfied to a precision better than 1 %. we is the electronic thermal resistivity that
obtained from the subtracted phonon thermal conductivity (see text and Appendix C).
It is obvious that the phonon thermal conductivity is nearly zero below 1 K.

5.3 Thermal conductivity in the normal state

We start by looking at the normal state behaviour, obtained by applying a magnetic field

of 0.5 T. The thermal conductivity of CeIrIn5 is plotted in Fig. 5.2 as κ/T vs T , for a

heat current parallel (J ‖ c) and perpendicular (J ‖ a) to the c axis. Actually because

the bulk Hc2 = 0.5 T is not reachable form the electrical resistivity measurement, to

check the WF law we take resistivity value at the resistive Hc2 ≈ 4 T.

At 4 T (above the resistive Hc2(0) ≃ 3 T), a measurement of the electrical resistivity

ρ(T ) using the same contacts for thermal conductivity shows the Wiedemann-Franz law

to be satisfied to a precision better than 1 %, giving κN/T = L0/ρ0, where L0 = π2

3
(kB

e
)2),

in the T → 0 limit. This demonstrates that our thermal conductivity measurement does

not suffer from electron-phonon decoupling effects (see Fig. 5.1) (see theory in this regard

in [217]). Applying this formula to the 0.4 T data of Fig. 5.2 yields ρ0 = L0T/κN =
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0.2 µΩ cm (for J ‖ a).
κN (at Hc2 ∼ 0.5 T ) exhibits the standard temperature dependence of a Fermi liquid,

namely κN(T )/T = 1/(a + bT 2), with a = 8.5 (19.6) K2 cm / W and b = 36 (90) cm

/ W for J ‖ a (J ‖ c). This data confirms that the two samples have the same level of

impurity scattering, in that their (thermal) residual resistivity ratio (RRR) is the same:

RRR(0.6 K) ≡ κ/T (T → 0)/κ/T (0.6 K) = 2.5 (2.4) or, equivalently, b/a = 4.6(4.3) K−2,

for J ‖ c (J ‖ a). (At H = 4 T the resistivity shows a FL behaviour, ρ(T ) = ρ0 + AT 2

for both samples. However at H = 0 T and above Tc onset, the electrical resistivity shows

a nearly linear behaviour for both current directions, ρ(T ) ∝ T 1.2−1.3. It is believed that

this material is near a quantum critical instability; see Chapter 8.)

5.4 Thermal conductivity in the superconducting state

Now we discuss the superconducting state, starting with J ‖ a (Fig. 5.2(a)). κ/T in-

creases with decreasing of temperature, reaches a maximum at Tc ≃ 0.4 K, because of

decreasing of huge inelastic e-e scattering in this heavy fermion system, and then begins

to fall below Tc, because of decreasing of number of quasiparticles when the gap opens

below Tc. This behaviour is also seen for c-axis heat current direction (Fig. 5.2(b)).

In the Fig. 5.2(a), κa/T is seen to extrapolate to a large residual linear term as T → 0,

of magnitude κ0a/T = 20 ± 3 mW / K2 cm. The following arguments show that such

residual heat transport is due to nodal quasiparticles, as expected for a superconductor

with nodes in the gap. There are only two other possibilities: unpaired electrons and

gapless superconductivity. Unpaired electrons may come either from pronounced sample

(real-space) inhomogeneity, whereby some regions are simply not superconducting, or

from pronounced multi-band effects (k-space inhomogeneity). The former is ruled out by

the extremely low value of ρ0 and the latter, shown to occur in CeCoIn5 [217], is ruled out

by the lack of any residual linear term in κc (in Fig. 5.2(b)). Indeed, if part of the Fermi

surface (or indeed part of the sample) were normal (ungapped), the associated metallic

conductivity would show up along both current directions. The same arguments rule

out gapless superconductivity. Moreover, the actual magnitude of κ0a/T is in excellent

agreement with theoretical estimates for a line node, as we now show.

The quasiparticle thermal conductivity of a superconductor with line nodes in the
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Figure 5.2: Thermal conductivity κ of CeIrIn5, plotted as κ/T vs T , for a heat current
perpendicular (a) and parallel (b) to the c-axis, in the superconducting state (SC; H = 0)
and the normal state (N; H = 0.5 T). The normal state data are fitted to the Fermi-liquid
dependence κN/T = 1/(a + bT 2) (red lines). A linear fit to the superconducting state
data for J ‖ a (below Tc/2) is also shown (blue line).

gap is given by [74]:

κe(T )

T
=
κ0

T
[1 +O(

T

γ
)2]

κ0

T
=

1

3
γN v2

F

a~

2µ∆0

(5.1)

where κ0/T is the universal value of the conductivity in the clean limit when γ << ∆0, γ

is the impurity bandwidth, γN the residual linear term in the specific heat, vF the Fermi

velocity, ∆0 the maximum value of the gap, µ the slope of the gap at the node, and a

is a constant of order unity whose value depends on the particular gap symmetry. The
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coefficient of the T 2 term is a finite temperature correction, strongly dependent on the

scattering phase shift. κ0/T is called ”universal” because it does not depend on impurity

concentration and can therefore be used to measure the magnitude of the gap (at the

nodes).

We can apply Eq. (5.1) to CeIrIn5 and estimate the magnitude of κ0a/T expected

theoretically from a state with a line node in the gap. The allowed order parameter

representations in tetragonal D4h symmetry are listed in Table 5.1 (for singlet pairing).

Two line node topologies are possible: vertical line nodes (where the Fermi surface cuts

the x = 0 plane or the y = 0 plane, or both), such as in the two d-wave states (dx2−y2

in B1g or dxy in B2g), and a horizontal line node (where the Fermi surface cuts the

z = 0 plane), such as in the hybrid gap of the (1, i) state of the Eg representation.

For hybrid gap, the simplest gap function is ∆ = 2∆0cosθsinθe
iφ, where a = 3/2 and

µ ≡ µline = 2 [72]. Using the measured values of γN (7300 J K−2 m−3 [150]), vF (2

×104 m/s [78]), and ∆0 (2.5 kBTc [243]), yields κ0a/T = 28 mW / K2 cm for hybrid gap

symmetry, in remarkable agreement with the measured value; the experimental value is

κ0a/T ≃ 20 mW/K2 cm (Fig. 5.2).

It should be stressed that Eq. (5.1) is only strictly valid in the clean limit, when

γ << ∆0. This γ is a measure of the pair-breaking effect of impurity scattering, so it

may be estimated by looking at the suppression of Tc with impurity doping. The effect

of introducing 0.1 % La into CeIrIn5 doubles ρ0a, from 0.2 to 0.4 µΩ cm, and it lowers

Tc by at most 10 % (complete discussion comes in the next chapter). Using the standard

Abrikosov-Gorkov formula for Tc/Tc0 vs Γ/Γc [178], where Γ is the normal state impurity

scattering rate (proportional to ρ0) and Γc is the critical value of Γ that suppresses Tc to

zero, we obtain Γ/Γc = 0.13. In the unitary limit of strong impurity scattering, which

yields the largest value of γ for a given Γ, we have: γ/∆0 ≃ 0.4
√

Γ/Γc = 0.14. This

confirms that both samples are safely in the clean limit.

The temperature dependence is also in qualitative agreement with theoretical calcu-

lations [74]. The general dependence is close to linear, as one would expect roughly for

a density of states that depends linearly on energy, as also observed in Sr2RuO4 [216,93]

and CePt3Si [91]. At a finer level, although, the initial T 2 term in Eq. (5.1) is not quite

resolved maybe because of too low γ.



Chapitre 5 : Gap Symmetry in CeIrIn5 64

Representation Gap Basis function Nodes

A1g s-wave 1, (x2 + y2), z2 none

A2g g-wave xy(x2 − y2) V

B1g dx2−y2 x2 − y2 V

B2g dxy xy V

Eg (1, 0) - xz V+H

Eg (1, 1) - (x+ y)z V+H

Eg (1, i) hybrid (x+ iy)z H+points

Tableau 5.1: Even-parity (spin-singlet) pair states in a tetragonal crystal with point
group D4h [219]. (V = vertical line node, H = horizontal line node.)

5.4.1 Anisotropy

Fig. 5.3 shows the anisotropy of thermal conductivity in CeIrIn5, κc/κa, as a function

of temperature in both superconducting and normal states. In the normal state, κc/κa

is virtually independent of temperature, changing by less than 5 % below 0.5 K, going

from κa/κc = 2.3 at 0.1 K to 2.5 at 0.6 K. The anisotropy in ρ(T ) is similarly constant,

with ρc/ρa ≃ 2.7 between 1.2 K and 8 K (we will see it in the last chapter). This simply

reflects the anisotropy of the Fermi velocity averaged over the Fermi surface.

The superconducting state anisotropy shows different behaviour, a difference that can

only come from gap anisotropy. Two distinct features are manifest: 1) an initial increase

starting immediately below Tc and 2) a drop below T ≃ Tc/3. These two features combine

to produce a broad peak centered around T ≃ Tc/2. We attribute the first feature to

an anisotropic suppression of inelastic scattering, brought about as electrons pair up and

cease to participate in the electron-electron scattering responsible for the bT 2 term in

κN/T . The fact that κc/κa exceeds its normal state value suggests that the gap opens

more rapidly or fully in the c direction. It is interesting that only by taking the ratio can

a peak be resolved, as it is not apparent directly in either κc(T ) or κa(T ) separately. By

contrast, CeCoIn5 exhibits a huge peak in both κa(T ) [150, 217] and κc(T ), thanks to a

ratio of inelastic to elastic scattering rates at Tc which is some 30 times larger (T 2
c is 36

times larger).

The second feature is more directly diagnostic of the nodal structure, as it comes from

low-energy quasiparticles. The factor of ∼ 3 drop in κc/κa between Tc/3 and ∼ Tc/8
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Figure 5.3: Temperature dependence of the anisotropy ratio κc/κa of CeIrIn5, in the
normal state (N) and in the superconducting state (SC). The dotted line is the ratio of the
two fit lines (to the normal state data) displayed in Fig. 1 and the solid line is a linear fit
to the superconducting state data below Tc/3. The precipitous drop at low temperature
reflects a strongly anisotropic gap whose nodal structure is inconsistent with vertical line
nodes (running along the c-axis). The small peak below Tc is due to inelastic scattering
(see text). Inset: calculated anisotropy (normalized at Tc) for the gaps d-wave [225] and
hybrid [60].

extrapolates to zero as T → 0. This reveals a qualitative a-c anisotropy in the velocity

of thermally excited nodal quasiparticles. In other words, those k-states responsible for

c-axis conduction in the normal state appear to be much more strongly gapped. This

excludes any nodal structure where the line nodes are along the c-axis, irrespective of

the shape of the Fermi surface. Indeed, such vertical line nodes would simply reproduce

the underlying mass tensor anisotropy (in vF ), and κc/κa would basically mimic the

normal state anisotropy. This expectation, confirmed by Vekhter et al. calculations [225],

is illustrated in the inset of Fig. 5.3. By arbitrarily introducing a modulation of the

gap maximum along the c-axis, whereby ∆0 = ∆0(θ), one can generate some degree of

additional anisotropy in the superconducting state, but it is typically modest and weakly
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T dependent [225]. More importantly, it would never bring to zero for J ‖ c(θ = 0) the

residual linear term present when J ‖ a. The absence of any evidence for a residual linear

term in the κc(T ) data of Fig. 5.2 down to T ≃ Tc/8 is therefore most conclusive in this

respect. It is difficult to imagine that by smoothly extrapolating κc/T to T → 0 a value

greater than 2-3 mW / K2 cm could be generated, an order of magnitude smaller than

for J ‖ a.
By excluding vertical line nodes in the gap of CeIrIn5, all of the allowed spin-singlet

representations for the order parameter listed in Table 5.1 [219] are eliminated, except

one: the two-component Eg representation. In particular, both d-wave states are ruled

out: dx2−y2 in B1g and dxy in B2g symmetry. Of the three states allowed in the Eg

representation, only the (1, i) state is generically free of vertical line nodes. Its typical

(x + iy)z dependence produces a hybrid gap, which, in addition to the line node in the

z = 0 basal plane as already mentioned, possesses point nodes along the z ≡ c direction

at the poles (see Fig. 1.2). Note that this state breaks time-reversal symmetry, and

could therefore in principle spontaneously generate an internal magnetic moment around

impurities. However, in high-quality samples, this effect could well be vanishingly small.

(For example, such a spontaneous moment was initially observed by zero-field µSR in

UPt3 below Tc [124], but not later on in the best crystals [49].) In CeIrIn5, similar µSR

studies have so far produced a null result [84].

This raises the question of whether our data is compatible with the c-axis point

nodes of a hybrid gap. The fact that these are linear point nodes, i.e. that ∆(k) ∝ k

at the node and so N(E) ∝ E2 at low E, implies that κ0/T in that direction is not

universal. Furthurmore, κ0c/T is smaller than the universal value for J ‖ a by a fact

or γ/∆0 [74] (beyond the normal state anisotropy). The prediction for our crystals is

κ0c/T = (κ0a/T )× (κNc/κNa)× (γ/∆0) = 28× 1/2.3× 0.14 = 1.7 mW / K2 cm. This is

very small, smaller than our lowest data point (at 50 mK) by a factor 6, but certainly is

still consistent with the current data. Our doping dependence of the residual linear term

studied in the next chapter, confirms the presence of point nodes.

5.4.2 Relation to prior work

Heat transport was previously measured in CeIrIn5 by Movshovich et al. [150]. This study

was restricted to transport in the plane (J‖a). This result offered good early evidence for

the presence of a line node in the superconducting gap, and our report confirms this. But
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Figure 5.4: Thermal conductivity of CeIrIn5, plotted as κ/T vs T , for a pure sample
and 0.1% La doped sample, in both the normal and superconducting states. Also shown
is the data of Movshovich et al. [150]. Solid lines are the Fermi-liquid dependence κN/T =
1/(a+ bT 2).

this information only eliminates one out of the seven possible states allowed by symmetry

(see Table 5.1). The novelty of our study is that we have also measured heat transport

along the other high-symmetry direction (J‖c), thereby allowing us to say where the line

node is located. This directional information eliminates all but one of the possible states.

Here, we provide a comparison with their data (see Fig. 5.4).

The two in-plane measurements agree qualitatively, in the sense that both find a

residual linear term (RLT), but not quantitatively, with the RLT being five times smaller

in Movshovich et al. (4.6 mW / K2 cm versus our 20 mW / K2 cm). The data sets are

compared directly in Fig. 5.4. We can think of three reasons for the large discrepancy.

The first is that their geometric factor is off by a factor 5. Given the lack of details about

either the room-temperature resistivity [150] or the uncertainty on their geometric factor,

we cannot assess whether this is indeed a possible explanation. The second scenario is

that their measurement on CeIrIn5 is plagued with the same problems encountered in

their measurement on CeCoIn5, reported in the same paper [150], namely an apparent

loss of electronic conductivity below 0.3 K due to poor contacts and electron-phonon
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Figure 5.5: Comparison of the temperature dependence of the specific heat (data from
Movshovich et al [150], and Petrovic et al [173]), thermal conductivity (our data) and
magnetization data, showing same bulk Tc determination.

decoupling. Electron-phonon decoupling can cause an arbitrarily large suppression of

the RLT (see discussion in [217]). The third possibility is that their measurement is

fine, but their sample has much lower quality. This shows up as a lower field-induced

normal-state residual conductivity, by a factor 6 or so (see Fig. 5.4). The correspond-

ingly smaller zero-field superconducting-state conductivity (by a factor 5) is not expected

from standard theory for a superconductor with a line node, where the RLT should be

constant (”universal”) or larger when the scattering becomes too large. In order to test

this third hypothesis, we performed additional measurements on ultra-high quality sam-

ples with a deliberate addition of very small amount of La impurities and we found a
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universal behaviour, as expected for a line node in the basal plane (see next chapter).

The Movshovich sample must therefore have had a different kind of disorder or defects,

possibly pronounced inhomogeneity.

We conclude that Movshovich et al. had problems either with their sample, their

geometric factor or their contacts, perhaps a combination of these.

Furthermore, in Fig. 5.5 we compare our data with electronic specific heat and sus-

ceptibility data from [150, 173]. The bulk nature of thermal conductivity measurement

comes from the fact that contrary to resistivity and point-contact spectroscopy mea-

surements, it is insensitive to filamentary superconducting inclusions. In this sense it is

completely analogous to specific heat measurement, as can be seen from the Fig. 5.5.

Both measurements give the same value of Tc. Simultaneously, both measurements do

not reveal any trace of resistive transition with onset at 1.3 K and zero resistance state

at 1.2 K. Thus we conclude that SC phase with Tc ≃ 1 K exists in the filamentary form

and does not affect our bulk measurements.
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Figure 5.7: Comparison of temperature dependence of the anisotropy of the thermal
conductivity calculated for hybrid Eg and d-wave gap symmetries (in d-wave calculation a
highly modulated cylindrical Fermi surface was considered). In their one electronic band
model, the impurity scattering in the unitarity limit was considered (figure from [225]).

5.4.3 Comparison with theory

Here we make a comparison between our data and theories.

Recalling Chapter 2, Arfi et al. [16] calculated the two components of κ, while they

considered a spherical Fermi surface, neglected inelastic electron-electron scattering and

assumed isotropic scattering off impurities, in the Born and unitarity scattering limits.

It seems the data does not fit the theoretical prediction for the hybrid gap symmetry in

this theory.

Fledderjohann and Hirschfeld [60] considered the self-consistent treatment of impurity

scattering for states with line nodes and found a gapless behaviour for hybrid gap, what

was absent in the theory of Arfi [16]. The calculation for this state (inset in Fig. 5.3) on

a spherical Fermi surface yields a residual anisotropy κc/κa that is 20 % of the normal

state anisotropy at T → 0. This is roughly compatible with the data.

As we mentioned in Chapter 2, Graf et al. [74] and Barash and Svidzinsky [23, 22]

suggested that at sufficiently low temperatures only a knowledge of the topology of the

gap at the nodes is needed to calculate the thermal conductivity and probe gap symmetry,
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and the low energy spectrum can be determined accurately. In their calculation [74] a

negligible inelastic scattering by phonons and quasiparticles compared to scattering from

impurities was considered. Despite this theory gives a comparable residual linear term

and a power law temperature dependence of thermal conductivity with experiment, but

the model still needs to be improved (see Fig. 5.6; the theory is still not consistent very

well with data).

Recently Vekhter and Vorontsov [225] calculated thermal conductivity for a- and

c-axis crystal lattice directions. They considered a few models in their calculations.

Two following models show a large thermal conductivity anisotropy in the superconduct-

ing state, comparable with experiments: (i) a d-wave gap model on a highly modulated

cylindrical Fermi surface; they considered an additional θ dependence into the energy

dispersion relation so that this additional term does not affect the in-plane thermal con-

ductivity, but does modify the out of plane κc. (ii) a hybrid gap model on an open Fermi

surface. Both models give similar behaviour of the thermal conductivity as a function

of temperature, with a low residual value of the anisotropy κc/κa, and therefore authors

have suggested both models may be relevant to CeIrIn5 (see Fig. 5.7). However, the con-

sidered highly modulated Fermi surface in the first model implies highly anisotropic band

structure that the published band structure data do not allow to reliably extract [225].

5.5 Conclusion

In conclusion, the in-plane thermal conductivity κa of CeIrIn5 measured down to Tc/8

reveals a sizable residual linear term κ0/T , consistent with the theoretical prediction,

which establishes the presence of line nodes in the superconducting gap. The c-axis

thermal conductivity κc reveals a profound anisotropy in the limit T → 0, which rules

out the possibility that this line is vertical (running along the c-axis). This eliminates all

but one of the allowed spin-singlet pairing states in the tetragonal structure D4h point

group symmetry, including the d-wave states proposed for the closely related compound

CeCoIn5, leaving as sole candidate the Eg symmetry.



Chapter 6

Universal Heat Transport in CeIrIn5

Study of the response to doping is one of the efficient ways to elucidate the super-

conducting pairing mechanism. Fundamental differences between unconventional and

conventional superconductors are illustrated by the unique effects that impurities have

on the low temperature transport properties of unconventional superconductors. Doping

with non-magnetic impurities suppresses superconducting condensate in unconventional

superconductors similar to magnetic impurities in conventional ones [2,85]. A remarkable

theoretical prediction about constancy of the electronic residual thermal conductivity in

special class of nodal superconductors with variation of impurity density [74], so called

universal behavior of thermal conductivity, was indeed confirmed experimentally in two-

dimensional cuprates [210] and in triplet superconductor Sr2RuO4 [209], and is considered

now a hallmark of unconventional superconductivity.

The existence of a universal limit, i.e. independent of the impurity concentration and

scattering phase shift, depends on the symmetry of the order parameter and is achieved

at low temperature, kBT << γ << ∆0, where γ is the bandwidth of the impurity induced

Andreev bound states. To recall, this universality can be understood as the cancellation of

an increase in Ns(0) ∝ γ ∝ Γ induced by adding disorder and a decrease in the scattering

time, τ ∝ 1/Γ, by the same disorder, so that κ0

T
∼ Ns(0)

Γ
∼ constant (see Chapter 2, page

29). Despite the general belief of unconventional character of superconductivity in heavy

fermion materials, universal conductivity was never observed in any of them [204,217].

Various thermodynamic and transport measurements indicate the existence of line

nodes in the superconducting gap of CeMIn5 compounds [150, 243, 112, 94, 13]. Never-

theless, the debates over the precise location of the nodes and possible multicomponent

structure of the order parameter still continue [94, 13]. Based on the anisotropy of ther-

72
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mal conductivity we showed in the previous chapter [193] that the superconducting state

of CeIrIn5 has equatorial line node [193], which in the tetragonal symmetry implies the

hybrid structure of the superconducting gap [219]. This state is characterized by the

presence of point nodes at the poles, which in turn suggest different response of in-plane

and inter-plane transport to doping. To recall, the linear energy dependence of density

of states in the superconducting state is obtained for line node, Ns(E) ∝ E, while for

linear point nodes it is Ns(E) ∝ E2 (see Table 2.3 in Chapter 2). These different energy

dependences lead different behaviour of transport properties.

In this chapter, we study the effects of impurity scattering on the in-plane and inter-

plane thermal conductivity of heavy-fermion superconductor CeIrIn5. The experiments

were performed on both highly pure and intentionally La-doped single crystals. We found

(i) impurity-insensitive residual linear term κ0/T in the ab-plane (universal thermal con-

ductivity) and (ii) an increasing residual linear term (non-universal thermal conductivity)

with impurity density in the c-axis heat current direction. This difference in response

provides key support for a hybrid state as the gap symmetry of CeIrIn5. Furthermore,

a comparison of c-axis transport in CeIrIn5 with b- and c-axis heat transport of heavy

fermion superconductor UPt3 [204] sheds new light on the pairing state in the latter

compound.

6.1 Experimental details

Substitution of 0.1% Ce with La doubles ρ0a, from 0.2 to 0.48 µΩ cm, increases four

times ρ0c from 0.5 to 2 µΩ cm and lowers bulk Tc by 10%. To recall the bulk transition

temperature for pure samples is Tc = 0.38 ± 0.02 K and the upper critical field Hc2 =

0.49 T for H ‖ c. We can prove, in the same way as we showed in the previous chapter,

that the contribution of phonons to the thermal conductivity is entirely negligible below

1 K for all samples. Fig. 6.1 shows the electrical resistivity of pure CeIrIn5 and doped

samples (Ce1−xLaxIrIn5) with x =0.001 and 0.002.

6.2 Universality of heat transport of CeIrIn5

The thermal conductivity plotted as κ/T vs T , for the pure and 0.1%La-doped CeIrIn5

(Ce0.999La0.001IrIn5) samples is shown in Fig. 6.2, for a heat current perpendicular (J ‖ a,
top panel) and parallel (J ‖ c, bottom panel) to the c axis. The results for the pure
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Figure 6.1: The in-plane and inter-plane resistivity of pure CeIrIn5 and doped
Ce1−xLaxIrIn5 with x=0.001 and 0.002. Resistivity data of three doped samples at the
lowest temperatures obtained during cooling of temperature (gray signs).

samples were discussed extensively in the previous chapter. As T → 0 the electrical

and thermal conductivity in the normal state converge to satisfy the Wiedemann-Franz

law: κN/T = L0ρ0, where L0 = π2

3
(kB

e
)2, for both in-plane and inter-plane directions

and in pure and all La doped samples. This shows that our measurements do not suffer

from electron-phonon decoupling (see [217]). In all samples κN exhibits the temperature

dependence characteristic of a Fermi liquid, κN(T )/T = 1/(a + bT 2), with a = 0.18

(0.78) K2 m/W and b = 0.32 (0.95) m/W for 0.1%La-doped samples for J ‖ a (J ‖ c),
see Fig. 6.2 (for pure samples a = 0.085 (0.196) and b = 0.36 (0.90)). Note that the

inelastic scattering coefficients, b, are independent of the residual resistivity (within 10%

error bar), indicating that doping does not alter the normal phase properties significantly.

0.1%La-doped samples show the same thermal residual resistivity ratio (RRR), namely

κ/T (T → 0)/κ/T (0.4 K) = 1.3 (1.2) or, equivalently, b/a = 1.8(1.22)K−2 for J ‖ a

(J ‖ c), which suggests the same level of impurity scattering for both samples.

6.2.1 Temperature dependence

In the superconducting state, κa/T shows a power law temperature dependence as T → 0.

For the pure sample, Fig. 6.2 (top), starting from close to Tc and down to the base
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Figure 6.2: The in-plane (top panel) and inter-plane (bottom panel) thermal con-
ductivity κ/T in the superconducting (zero field) and normal (magnetic field of 0.5 T ,
higher than Hc2=0.49 T) states of pure CeIrIn5 and Ce0.999La0.001IrIn5. Arrows show Tc.
Lines show extrapolation of residual term, assuming linear (pure sample) and T 2 (doped
sample; red line) variation of κ/T . In c-axis pure sample (bottom) linear extrapolation
towards T = 0 gives negative value, which implies higher than linear power law below our
experimentally accessible temperature range. Thus dashed line shows a T 2 dependence of
κc/T which points to a negligible residual linear term consistent with linear point node.
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Figure 6.3: Normalized in-plane and inter-plane thermal conductivity of pure and
0.1% La-doped CeIrIn5 samples in the superconducting state. The large anisotropy of
the thermal conductivity in pure samples at low temperature that is due to the gap
anisotropy (b), decreases by adding impurity to the system (a).

temperature of our experiment, κa/T is close to linear. La doping does not alter this

dependence at high temperatures, however leads to a saturation of κa/T as T → 0 with

T 2 behaviour in the crossover regime. This brings the two curves together in T → 0

limit, revealing universal limit of thermal conductivity.

The temperature dependence of the c-axis conductivity is notably different, Fig. 6.2

(bottom). On entering the superconducting state, κc/T dives down steeply below 0.2

K. In the pure samples linear extrapolation towards T = 0 gives negative value, which

immediately implies higher than linear power law below our experimentally accessible

temperature range. Doping results in the appearance of finite extrapolation towards

T → 0, and actually reveals a T 2 power law in the low temperature range. This shows

that c-axis thermal conductivity is not universal.

The difference between the two directions becomes even more obvious when normal-

izing thermal conductivity by the value in the normal state, κS/κN , as shown in Fig. 6.3.

While in pure samples low temperature behaviour is notably anisotropic, with κS/κN

extrapolation to a zero (finite) for J‖c (J‖a), doping makes the two directions equivalent

and reveals characteristic saturation of κ/T vs T as T → 0 followed by a T 2 upward

curvature at low temperatures.

Two groups of theories suggested existence of the T 2 contribution to thermal con-
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ductivity, κ/T . In Zhitomirsky and Walker [245] and Graf-Balatsky [69] models this

dependence is predicted to exist for T > γ, where γ is the impurity bandwidth, while in

Graf theory [74] the T 2 term appears as a finite temperature correction of the univer-

sal limit. This difference would imply a low temperature cut-off of the T 2 contribution

in the first group of models and while it should start from T = 0 in Graf model and

its range should extend to higher T with doping. Since the latter is observed in our

experiment, where in 0.1% La doped sample, possessing higher γ, the range of the T 2

behavior extends to higher temperatures, we stick in the following to Graf model. The

data for doped samples in Fig. 6.2 and Fig. 6.3, for both heat current directions show

the same T 2 temperature dependence at low temperature, which is consistent with Graf

et al. calculation. This would imply that for pure samples γ is below temperature range

of our experiment and we are not able to reach a T 2 regime.

6.2.2 Zero temperature limit

As can be seen from the top panel of Fig. 6.2, the extrapolations of in-plane thermal

conductivity for pure and 0.1%La-doped samples in zero field reach the same value at

zero temperature, despite the two-fold difference in the normal state conductivity. This

provides the first instance of universal heat transport in heavy fermion compounds.

Doping with 0.1% of La also suppresses Tc to about 0.35 K. Using the standard

Abrikosov-Gorkov formula for suppression of Tc by impurity scattering at a rate Γ (pro-

portional to ρ0),

ln(
Tc0

Tc

) = Ψ(
1

2
+

~Γ

kBTc0

) − Ψ(
1

2
) (6.1)

where Ψ(x) is the digamma function, Tc0 is the maximum Tc for the disorder free material,

and Γ is the nonmagnetic impurity scattering rate in the normal state , we obtain for the

doped sample ~Γ
kBTc0

∼ 0.2. In the unitarity limit of impurity scattering, which gives the

largest value of γ for a given Γ, we have: γ = 0.63
√

~∆0Γ ∼ 0.17∆0, were ∆0 = 2.5kBTc0

was assumed [243, 105]. This compares favourably with the experimentally deduced

criterion for the observation of universal conductivity in Sr2RuO4
1 [209], and is consistent

1Suzuki et al., [209] derived the experimental condition of the low temperature and small γ ”universal-
ity limit” which is theoretically described as kBT ≤ γ << ∆0. They observed that above ~Γ/kBTc0 = 0.2
the universality starts to break and this crossover point corresponds to γ/kB ≃ 0.3K ≃ 0.1∆0/kB . Thus
they considered kBT ≤ γ ≤ 0.1∆0 as an experimentally deduced criterion for the observation of universal
conductivity.
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with the observation of unchanged residual linear term in Fig. 6.2 (top).

Experimentally, the impurity bandwidth can be estimated from the parameters of the

fitting formula close to the universal limit, κ/T = a + bT 2. In the unitarity limit, the

deviation of κ/T from the universal value at finite temperature is described as [74]:

κ

T
=
κ0

T
[1 +

7π2

60
(
kBT

γ
)2] , (6.2)

and we find γ=0.3 K for the a-axis doped sample. This large impurity band width

means that the scattering is strong. We note that the value determined in this way is

approximately two times larger than the value extracted from Tc suppression through γ =

0.63
√

~∆0Γ. It is possible that there is a deviation of the scattering phase shift from the

unitarity limit in the doped samples; in the Born limit the impurity band width becomes

exponentially small with increase of impurity scattering, γ = 4∆0 exp(−π∆0/2Γ) [86].

6.3 Non-universality of c-axis heat transport of CeIrIn5

For c-axis transport the effect of doping is notably different. The residual extrapolation

of thermal conductivity rapidly increases with residual resistivity in the normal state.

We now explore this behavior in a more systematic way.

In Fig. 6.4 we show the evolution of the inter-plane thermal conductivity with vari-

ation of impurity scattering rate of the samples. Decrease of the conductivity in the

normal state is accompanied by a systematic increase of the residual linear term. Since

in the doped samples a T 2 contribution is dominating, we estimated residual linear term

in pure samples assuming the validity of this functional form and using two lowest-in-

T data points. This gives values very close to zero and definitely not higher than 2

mW/cmK2 (as we showed it in the previous chapter) in the two purest samples, which

we take as an estimated error bar.

In the inset in Fig. 6.4 we plot a value of the residual linear term as a function of

residual resistivity ratios, RRR=ρ0/ρroom. In the unitarity scattering limit, a square root

behaviour for the residual linear term vs impurity scattering rate is expected theoretically

[74] for a spherical Fermi surface, κc

T
∝ γ

µ2

1
∆2

0

and γ ∝
√

Γ, while for open Fermi surface

it is close to linear, κc

T
∝ γ2

∆2

0

ln ∆0

γ
∝ Γ [225]. Uncertainty of residual linear term in the

pure samples prevents quantitative comparison with these theoretical expectations. But

the strong point is that the residual linear term, κ0c

T
, is increasing with impurity, which
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Figure 6.4: Evolution of the temperature dependence of κc/T in the superconduct-
ing state (H = 0 T) of CeIrIn5 with sample residual resistivity. ρ0 is 0.56, 0.91, 1.33,
1.87 and 2.3 µΩcm in order for purest (CeIrIn5, solid-black circle) to dirtiest samples
(Ce0.999La0.001IrIn5, blue square). The low temperature region for each sample is fit-
ted with a T 2 dependence (shown in lines) according to the theory [72, 74]. Inset:
the dependence of residual linear term on Normalized sample impurity scattering rate,
RRR≡ ρ0/ρroom, Γ0 ≡ ρroom and Γ ≡ ρ0, revealing non-universal character of c-axis heat
transport, κ0c

T
∝ γ ∝

√
Γ; dashed line is guide to the eye.
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Figure 6.5: The anisotropy ratio κc/κa of pure and doped CeIrIn5 in the supercon-
ducting state. The precipitous drop at low temperature for pure samples reflects strong
anisotropy of the superconducting gap, inconsistent with vertical line nodes. Doping
broadens point nodes at the poles, resulting in smearing of the anisotropy ratio decrease.
The small peak below Tc is due to the inelastic scattering.

shows nonuniversality of the c-axis heat transport.

6.4 Anisotropy

The increase of the c-axis residual linear term with impurity density can be easily observed

in the anisotropy ratio. In Fig. 6.5 we can see that by adding 0.1% of La impurity to the

system eliminates the sharp drop in the anisotropy ratio at low temperatures. This is

consistent with broadening of the point nodes at the poles and increasing of the density

of the quasiparticles there, while the residual linear term in the a-axis with linear line

node remains universal.
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Figure 6.6: The in-plane and inter-plane thermal conductivity of UPt3, in the normal
and superconducting states [203]. Note to the similarity of this Figure to Fig. 5.2 in the
previous chapter.

6.5 Comparison with HF superconductor UPt3

Superconductivity in UPt3 was first found by Stewart [201] in 1984 with a transition

temperature of 0.5 K. Considerable attention has been received since a complex phase

diagram was observed in UPt3, which is reminiscent of the superfluid phases of 3He.

Because of similarity that we found between the heat transport properties of UPt3 and

our data on CeIrIn5, which we are showing as follows, it is instructive to have a short

review on the physical properties of UPt3. For a comprehensive review on UPt3 reader

is referred to [97].
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6.5.1 A review on UPt3

UPt3 has a hexagonal crystal structure with the lattice parameters a = 5.764 Å and

c = 4.899 Å so that c/a = 0.845, not too far from the hard sphere limit of 0.816. The b

axis is normally defined as being perpendicular to a.

The low temperature normal state of UPt3 is a strongly renormalized Fermi liquid,

as evidenced by the large electronic specific heat coefficient, γ=430 mJ/molK2 [59]. It

orders antiferromagnetically at TN ∼ 6 K [5], but the ordered moment m = 0.02µB/U

is unusually small. The magnetic order is collinear and commensurate with the lattice,

with a moment aligned with the b axis in the basal plane. While the coupling is antiferro-

magnetic in the plane, it is ferromagnetic between planes. Although, the exact nature of

the magnetic order is still under debate. The interplay of magnetism with superconduc-

tivity has been studied by doping with Pd on the Pt site. A long-range antiferromagnetic

phase exists in U(Pt1−xPdx)3 for x > 0.006 and it becomes instable for smaller Pd concen-

trations [50]. In this material superconductivity appears together with a small-moment

antiferromagnetic phase. This has been interpreted in terms of a competition between

large-moment antiferromagnetism and superconductivity and has lead to the suggestion

that superconductivity is not mediated by antiferromagnetic interactions, but rather by

ferromagnetic spin fluctuations, which cannot coexist with long-range antiferromagnetic

order [50]. Inelastic neutron scattering experiments carried out on pure UPt3 [67] show

that the magnetic fluctuation spectrum is complex and consists of both antiferro- and

ferromagnetic components.

As the temperature is reduced, the resistivity goes to zero without showing any

Kondo-like peak, in contrast to other heavy fermion systems. Above the superconduct-

ing transition temperature, the electrical resistivity shows a Fermi-liquid behaviour up

to 2 K. The low-temperature specific heat C(T ) shows to include a T 3 lnT term which is

absent in other heavy fermion systems. This term in C(T ) has been attributed to long-

range ferromagnetic spin fluctuations. Moreover, later specific-heat measurements did

not define a definite statement on the low temperature dependence due to the existence

of an anomaly at very low temperature. Therefore, the reported T 2 dependence which

was deduced for T > 0.1K [205,79,59,97] has to be considered with caution.

Nodal structure

Thermal conductivity measurement has reported a two-dimensional order parameter

in this material. A number of groups have measured the thermal conductivity of UPt3
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Figure 6.7: Thermal conductivity of UPt3 in the low-temperature regime (between 16
mK and 70 mK) as a function of T 2 with fit curves based on the theoretical predictions
of Graf et al. [72] (from [203]).

[30,126,203]. Lussier et al. [126] found an anisotropy between the heat flow parallel and

perpendicular to the ab plane with a large finite value for the anisotropy ratio κc/κb

as T → 0, which leaded to conclude an E2u order parameter for system (see Fig. 6.8).

In E2u gap symmetry because of quadratic point nodes at the poles, there are a large

number of zero temperature quasiparticles to carry heat in the c-direction. Thus the

thermal conductivity anisotropy at low temperature, κc/κb, shows a large finite value

compared to E1g model (see Table 2.4 in this regard). Further measurements at very

low temperature were performed by Suderow et al. [203] down to 16mK. They found

the temperature dependence of κ below 30mK, fits very well with E1g model. Thus

they concluded that very low temperature data are slightly better explained within E1g,

compared to the E2u (see inset of Fig. 6.7).

As we reviewed in the theoretical Chapter 2, a universal residual linear term of thermal

conductivity, κ0/T , for certain order-parameter symmetries is predicted [72]. Universal

conductivity is naturally expected for E2u gap structure, for both κb/T and κc/T . The

universality could not be observed in UPt3 so far (see Fig. 6.9). In this chapter, by

comparing CeIrIn5 and UPt3 heat transport data, we suggest that the lack of universality

in UPt3 might be a sign for the absence of any line node in the gap symmetry of this
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(a) (b)

Figure 6.8: Anisotropy ratio vs temperature in UPt3. Figures from (a) B. Lussier et
al. [126] and (b) H. Suderow et al. [203].

material.

Theoretical calculations including the real Fermi surface of UPt3 were reported by

Norman and Hirschfeld [155]. Their results show that both E1g (hybrid-I) and E2u

(hybrid-II) gaps can account for κ(T ). Although, a large value of the anisotropy ratio

(around half of the normal state value) as T → 0 was reported to favor the E2u gap (at

least in the limit of low scattering rates; lower than 0.1Tc).

The field dependence of the thermal conductivity of UPt3 at very low temperatures

showed scaling as a function of x = (T/Tc)(Hc2/H)1/2, confirming the theoretical predic-

tion for a superconductor with lines of nodes [226,198].

Penetration depth measurements extracted the magnetic penetration depth λc(T ) and

λa(T ), which appear to be consistent with a superconducting gap with a line of nodes in

the basal plane. However, no definitive distinction between E1g and E2u gap symmetry

can be drawn [238].

The ultrasound attenuation measurements [55, 196] report a linear T dependence of

the attenuation for transverse sound waves propagating in the basal plane with polar-

ization also in the basal plane, but a T 3 power law for polarization parallel to c. This

anisotropy was interpreted in favour of the existence of horizontal line nodes, but says

nothing about nodes along c−axis.
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(a) (b)

Figure 6.9: The thermal conductivity of the irradiated samples UPt3, along the b-
(a) and c-axis (b). The data (# 1) is for the non irradiated samples. The insets show
the dependence of the zero temperature extrapolation of κ/T in the superconducting
phase, normalized by the normal state data as estimated by the Wiedemann-Franz law
(κ/T = L0/ρ0) as a function of the residual resistivity ρ0 (from [204]).

The nuclear magnetic relaxation measurements indicates the presence of a line node

as well. Below Tc no Hebel-Slichter peak is seen and a T 3 dependence is observed at low

temperature between 0.1 and 0.3 K, which is compatible with a density of states that

grows linearly with energy. Here also because there is no information below T ∼ 0.1 K,

one should be careful to get any conclusion.

In brief, at present, the most promising model is based on the E2u representation

which seems to be consistent with most of the experimental results. Theoretical work by

Yang and Maki [236] also proposed the E2u gap symmetry. For a recent review of the

normal state and superconducting properties of UPt3 see [97].

6.5.2 A comparison between CeIrIn5 and UPt3

It is instructive to compare our results with those obtained on the hexagonal heavy-

fermion superconductor UPt3 [203] (see Fig. 6.6). Not only is the value of the critical

temperature the same (Tc = 0.44 K), but the normal state heat transport is essentially

identical, with the same residual resistivity in the best crystals (ρ0 = 0.2 µΩ cm), the same

strength of inelastic scattering (b/a = 4.0 K−2), and the same temperature-independent

anisotropy, albeit in reverse order (κNc/κNb = 2.7). The electronic specific heat of UPt3

is a factor 1.4 larger (γN = 1.04 × 104 J / K2 mole). However, the in-plane vF is

very different: vFa = 20 km/s in CeIrIn5 and vFb ∼ 4 km/s in UPt3. This means from
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Figure 6.10: The in-plane and inter-plane thermal conductivity normalized at Tc,
κ/T / κ(Tc)/Tc, of pure CeIrIn5 and doped Ce0.999La0.001IrIn5 (solid signs) comapred to
pure and irradiated samples UPt3 (open signs) (data taken from [204]) in the supercon-
ducting state. The c-axis transport in CeIrIn5 samples perfectly follow data of both b-
and c-axis heat transport UPt3, for pure and doped cases.

κ0

T
= 1

3
γN v2

F
a~

2µ∆0

that all other things being equal (ı.e. ∆0 and µ), the predicted κ0b/T

in UPt3 should be 20 times smaller (compare to κ0a/T = 28 estimated for CeIrIn5 in the

previous chapter) or so, namely 1.5 mW / K2 cm. Suderow et al. [203] went down as low

as 16 mK, and their data for κb/T extrapolates to 0.2 mW / K2 cm. This is one order

of magnitude too small. This raises the question of a line node in basal plane.

In Fig. 6.11 we plot κ/T for CeIrIn5 and UPt3, normalized to the normal state values.

As can be seen, the c-axis transport in CeIrIn5 perfectly follows the temperature depen-

dence observed for b-axis in UPt3. This suggests that in both cases the superconducting

gap affects the transport in the same way, producing no residual linear term in κ0/T and

notable upward curvature with T , both expectations in line with theoretical predictions

for point nodes.

Comparison of the in-plane transport in CeIrIn5 with b- and c-axis transport in UPt3,

however, reveals a clear difference. While in CeIrIn5 κ/T extrapolates to a finite value

and remains unchanged with doping (universal), neither is the case in UPt3 (see Fig. 6.9

and Fig. 6.10); the extrapolated κ/T at T → 0 K of UPt3 rapidly increases with the

density of defects, in both heat current directions a- and c-axis, showing no universal

behaviour. Moreover, heat transport in pure UPt3 shows a temperature dependence
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Figure 6.11: The in-plane and inter-plane thermal conductivity normalized at Tc,
κ/T / κ(Tc)/Tc, of pure CeIrIn5 (solid signs) and UPt3 (open signs) (data taken from
[204]) in the superconducting state. The data for c-axis transport in CeIrIn5 perfectly
follow data of both b- and c-axis heat transport UPt3, while the a-axis data in CeIrIn5

is qualitatively different.

notably different from a-axis transport in CeIrIn5 over the whole temperature range,

however, qualitatively similar to c-axis transport in CeIrIn5 (Fig. 6.11).

Universal in-plane conductivity (J⊥c) is naturally expected for a hybrid gap struc-

ture, and therefore increase of κ0/T with irradiation in UPt3 represented the biggest

challenge for understanding this material. It was suggested that the increase may be

due to preferential concentration of the irradiation defects at the surface with density

exceeding locally the range of the universal behaviour [179]. Comparison with CeIrIn5

suggests that not only the lack of the universality, but a qualitative difference in the

temperature dependence of κ/T distinguish the two cases.

This inconsistency seems to have escaped previous authors [126,127], and it suggests

that a line node may not be present in the gap of UPt3. This is further compounded by

the fact that κb(T ) and κc(T ) are basically identical over the entire temperature range,



Chapitre 6 : Universal Heat Transport in CeIrIn5 88

from Tc/20 to Tc; see Fig. 6.11. There is some modest degree of additional anisotropy

that leads to a gradual decrease in κc/κb reaching a factor 2 or so by Tc/10. In particular,

at the lowest temperature, namely 16 mK, κb = κc. This is in total contradiction with

the presence of a line node. In the clean limit, at T = Tc/25, the anisotropy should be

enormous. One very special way out was to invoke a hybrid-II gap, associated with the

(1, i) state of the E2u representation in D6h symmetry. It has quadratic point nodes along

the c-axis, which also give rise to universal transport, with an expected anisotropy ratio

as T → 0 which is close to unity, as observed. We conclude that gap structure and order

parameter symmetry in UPt3 is totally open question.

6.6 Conclusion

In conclusion, nonmagnetic impurities strongly affect the superconducting state of CeIrIn5

compound. In particular, they wipe out the anisotropy seen in pure samples. We ob-

served the universal thermal conductivity along the conducting plane as expected for

superconductors with line of nodes in the superconducting gap. This is the first ob-

servation of this sort in heavy fermion superconductors. In stark contrast inter-plane

heat transport rapidly increases with doping in the T → 0 limit, consistent with linear

point node character. Both these observations are compatible with the hybrid gap Eg

symmetry.

A comparison between CeIrIn5 and well known heavy fermion superconductor UPt3

reveals an amazing similarity between the c-axis CeIrIn5 and UPt3 transport in both

directions (J‖c, J⊥c). This, together with absence of universality in UPt3 lead to doubt

on the presence of line node in the gap structure of UPt3.



Chapter 7

Multi-Component Order Parameter

in CeIrIn5

7.1 Introduction

As was shown in the previous chapters, anisotropy of thermal conductivity and response

to doping both suggest superconducting gap with equatorial line node and polar point

nodes in CeIrIn5. The hybrid gap structure, the only possible representation in the

crystal lattice of the tetragonal symmetry consistent with these observations, is multi-

component and should reveal qualitatively different response to magnetic field of different

orientation. To get further insight into superconductivity of CeIrIn5 we study thermal

conductivity of pure crystals as a function of magnetic field. In this chapter, we present

the first study of magnetic field effect on the heat transport of CeIrIn5. In this road a

multi-phase diagram was found for this compound.

We begin with brief review of the previous studies on systems with multi-component

order parameter. Then in the remainder, the results of measurements are presented in

two main parts. In the first part (7.3) we present H‖c data and then in the second

part (7.4) H‖a results.

7.1.1 Superconductivity with multi-component order parame-

ter

Theoretical investigation of unconventional pairing began with the publication by An-

derson and Morel [10] of the generalization of BCS theory, aiming at the explanation

89
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Figure 7.1: Superconducting phase diagram of UPt3 for magnetic fields along (H‖c)
and perpendicular to (H⊥c) the hexagonal axis as determined by the specific heat and
the magnetocaloric effect (From [228]). N labels the normal phase and A, B and C label
different superconducting phases.

of the low temperature phase of 3He. They studied the physical consequences of BCS

pairing with non-zero angular momentum. Following the discovery of the superfluidity in
3He, it soon became clear that conventional s-wave BCS superfluid model fails to explain

existence of several superfluid phases.

Soon after, study of unconventional superconductors lead to discovery of multiple

superconducting phases in UPt3, followed by Sr2RuO4 [138, 137] and quite recently in

PrOs4Sb12 [92]. Three phases are observed in the H − T phase diagram of UPt3 (see

Fig. 7.1). Much effort was devoted to determine the superconducting order parameter of

each phase. For a complete discussion see [97].

There are three features in the phase diagram of UPt3, Fig. 7.1. (1) The existence

of two superconducting phases in zero field, (2) the existence of three superconducting

phases in magnetic field, (3) three phases meet each other at a tetracritical point (T ∗,H∗)

on the upper critical field line. In order to explain the zero-field splitting and the topology

of the phase diagram, a number of different Ginzburg-Landau models was proposed,

most of which require an unconventional superconducting order parameter. Two most

plausible models, are based on: (i) a single multi-component order parameter coupled to

a symmetry breaking field [187,71,72]. Here the degeneracy of a two-dimensional even or

odd parity order parameters is lifted by a symmetry breaking field, and (ii) theories based

on two symmetry un-related order parameters which are accidentally nearly degenerate

[40,244,73].

In the former model, so called 2D E-representation model, the theory has only one
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 ∆ = (x + iy)z           ∆ = (x + i0.2y)z                   ∆ = xz(a) (b) (c)

Figure 7.2: (a) Eg(1, i) with basis function (x+ iy)z (hybrid gap), (b) (x+ i0.2y)z, (c)
and Eg(1, 0) with basis function xz gap symmetries.

phase transition in zero field and by itself cannot explain the double transition [187]. The

splitting ∆Tc is caused by lifting of the degeneracy of a two-component superconduct-

ing order parameter by a symmetry-breaking field. The evidence for that in UPt3, for

example, is that the small-moment antiferromagnetic phase below a Neel temperature

of TN ∼ 6 K, detected by neutron scattering experiments, acts as a symmetry-breaking

field [80, 106]. In this model, the possible 2D representations of symmetry are E1g, E2g,

E1u or E2u. A superconducting order parameter belonging to one of these representa-

tions can be represented by a complex vector ~η = (η1, η2), whose components are the

coefficients multiplying the basis functions ψ of the two dimensional representation:

∆(k) = η1ψ1(k) + η2ψ2(k). (7.1)

As we mentioned before, the most possible 2D representations for UPt3 are E1g or

E2u. The orbital order parameter differs for the two models, particularly for the high

temperature A phase [71]. For E1g pairing the A phase has the structure, ∆A ∼ zx,

which has an equatorial line node in the basal plane, as well as a longitudinal line node

on Fermi surface (see Fig. 7.2). For the E2u representation, ∆A ∼ (x2 − y2)z also has

an equatorial line node, but has two longitudinal line nodes oriented 90 degrees to one

another. The low-temperature B phase of both models breaks time-reversal symmetry.

As a result the longitudinal line nodes are closed by the growth of the second component

of the order parameter; for T → 0, ∆B ∼ (x+ iy)z for E1g symmetry (see Fig. 7.2), while

∆B ∼ (x+ iy)2z for the E2u representation [71].

Although, despite all E representation models are based on two-component orbital
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order parameters it was reported that they yield different predictions for the thermo-

dynamic, magnetic and transport properties, including the H − T phase diagram [71].

For example, in E2u representation model there is an apparent tetracritical point for all

field orientations, while the spin-singlet E1g model appears to be incompatible with the

tetracritical point for H‖c [71].

In the accidentally degenerate models the phase diagram is accounted for by two

primary order parameters belonging to different irreducible representations, which are

selected in order to enforce a tetracritical point in the GL theory for the H − T phase

diagram of UPt3, for example [73] 1. The splitting of the phase transition is due to

accidental degeneracy, not to coupling to the magnetism. Once two representations are

involved, the possibilities for the form of the order parameter become numerous. 2.

7.1.2 Thermal conductivity of unconventional superconductors

in magnetic field

To recall, a strong test for the order-parameter symmetry of superconductors is provided

by the magnetic-field dependence of thermal conductivity. As pointed out by Volovik,

in contrast to fully gapped superconductors, where at low fields thermal conductivity

is determined by quasi-particle hopping between vortex cores, in nodal superconductors

the quasi-particles are spread from the cores into the bulk and thus can participate in

heat transport at fields just above Hc1 [115, 226, 113] (see section 2.4.2). This leads

to immediate increase of κ at low fields, which is proportional to the density of states

N(EF ) ∝
√
H for Hc1 < H << Hc2 and thus κ(H) ∝

√
H, as observed in several

unconventional superconductors [42,91].

Moreover, the thermodynamic and transport characteristics of superconductors with

nodes exhibit scaling behaviour at low fields and low temperatures. Kubert and Hirschfeld

[116] derived a scaling relation, proposed by Simon and Lee [198], for the quasiparticle

transport properties in the variables T/
√
H, mixing field and temperature dependence,

1In the accidentally degenerate models the two representations can have the same or different parity
[40].

2The AB model, for instance, is one of the proposals that explains the H − T phase diagram for
UPt3 [40]. In this theory, the two transitions are due to the separate Tc equations for A and B: the
closeness of the two transitions is accidental. In the AB model, ”AB” refers to a mixture of an A1 or A2

representation with a B1 or B2 representation. The combined order parameter can still have nodes that
may be detectable by power-law behaviour of thermodynamic and transport quantities [40]. To write
the GL free energy in this mixed presentation model shows two transition temperatures in zero field and
can explain all features of the phase diagram of UPt3 [40].
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which can be used as a probe for nodal structure. Barash and Svidzinsky [23] have

argued that precisely this kind of scaling is expected for E2u gap (having quadratic point

nodes at poles), while noticeable deviations from scaling are expected for the hybrid gap

(having linear point nodes at poles) 3.

7.1.3 Response to magnetic field in multi-component supercon-

ductors in tetragonal crystal structure

In a tetragonal crystal structure with point group symmetry D4h for spin-singlet even-

parity pairing, there are four one-dimensional (A1g, A2g, B1g and B2g) and three possible

two-dimensional representations (Eg) (see Table 5.1). Each of the four one-dimensional

representations corresponds to a single, scalar gap function, so these pair states should

exhibit only one superconducting transition. In the Eg-representation, the three allowed

states characterized by different symmetries, Eg(1,0), Eg(1,1) and Eg(1, i). Of the three

states, only Eg(1, i) has broken time reversal symmetry. A general consequence of the

time reversal symmetry broken state is that a finite magnetic field oriented along a high

symmetry direction in the basal plane lowers the symmetry of the normal state and

leads to a second superconducting transition in the mixed phase as the temperature

is reduced [6, 7]. The Eg(1,i) representation described by ~η = (1, i), while the two

other phases are described by ~η=(1,0) and ~η=(1,1), respectively. The nodal structure is

characterized by linear point nodes in the c direction and a line node in the basal plane

for the Eg(1, i) phase, and at least an additional longitudinal line node in the c direction

for two other phases.

Looking at the Ginzburg-Landau model, the free energy for the Eg representation of

D4h with a basis ~η = (η1, η2) is given by [197] 4

FGL = − |~η|2 + |~η|4 /2 + β2(η1η
∗
2 − η2η

∗
1)

2/2 + β3 |η1|2 |η2|2 , (7.2)

where the coefficients βi are material-dependent constants. There are three stable ho-

mogenous phases: (a) ~η = (1, i)/
√

2 (β2 > 0 and β2 > β3/2), (b) ~η = (1, 0) (β3 > 0

and β2 < β3/2), and (c) ~η = (1, 1)/2 (β3 < 0 and β2 < 0) [197, 6, 7, 103]. The applica-

tion of a magnetic field in the basal plane breaks the degeneracy of the two components

3Their calculation was done for J‖aH‖a and J‖cH‖c configurations [23].
4Here in the GL free energy only fourth-order invariant terms are considered and gradient terms are

neglected; see details in [197].
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η1 and η2. Symmetry arguments for this imply that the vortex lattice phase diagram

contains at least two vortex lattice phases for magnetic fields applied along any of the

symmetry axes in the ab plane: (1,0,0), (0,1,0),(1,1,0),(1,-1,0). To illustrate the origin

of these phase transitions, consider a zero field ground state ~η = (1, i) and a magnetic

field applied along the (1,0,0) direction. Due to the broken tetragonal symmetry, the

degeneracy of the ~η = (1, 0) and the ~η = (0, 1) solutions is removed by the magnetic

field. Consequently only one of these two possibilities will order at the upper critical

field [103]. When field is applied along c-axis, calculation predicts that ~η = (1, i) is

stable (since this phase minimize the number of nodes in the order parameter) and no

change in the symmetry [6, 7].

In brief, for multi-component order parameter superconductors external magnetic

field acts similar to the small internal magnetic field. If the direction of magnetic field

is different from the highest symmetry axis, the response of the superconductor is deter-

mined by lifting the degeneracy of the two order parameters, and a phase transition with

nodal topology change is expected. Lifting the degeneracy creates vertical line nodes, so

this topology change should be the most obvious for the heat current along c-axis. On the

contrary, for magnetic field parallel to the high symmetry direction (c-axis), the response

is the same as for single component order parameter superconductors, i.e. it should reveal

nodal behaviour for in-plane transport and activated behaviour for inter-plane transport.

7.2 Samples

The experiments were performed on the same pure samples in Chapter 5. The bulk upper

critical fields are Hc2 = 0.49 T and 1 T for H‖c and H⊥c, respectively.

7.3 Magnetic field along tetragonal c-axis, H‖c

7.3.1 In-plane and inter-plane heat transport

In Fig. 7.3 we show the evolution of κ/T vs T for in-plane and inter-plane currents

with application of magnetic field. The isotherms are plotted in the right panels, with κ

normalized to the normal state value κN . In Fig. 7.4 we compare the low-temperature

behaviour of κa and κc with classical cases: that of s-wave superconductor Nb [122]

and d-wave superconductor Tl-2201 [177]. The H dependence of κa/T in CeIrIn5 is
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Figure 7.3: Temperature and field dependence of thermal conductivity in CeIrIn5 for
two current directions J‖a (upper panels) and J‖c (lower panels).



Chapitre 7 : Multi-Component Order Parameter in CeIrIn5 96

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 H / H
c2

s-wave

CeIrIn
5
 H||c

d-wave

J||a 

J||c 
[ 

κ
0
 /
 T

 ]
  
/ 
 [
 κ

N
 /
 T

 ]
 

 

Figure 7.4: Low temperature field dependence of thermal conductivity in CeIrIn5

for two current directions along the plane, J‖a, and perpendicular to the plane, J‖c. A
comparison with typical behaviour of conventional s-wave (Nb [122]) and d-wave (Tl2201
[177]) superconductors has been made. Qualitatively different field dependence between
J‖a and J‖c directions in T → 0 limit is consistent with the hybrid Eg gap symmetry
with equatorial line node and polar point node. This anisotropy becomes evident below
some characteristic temperature T ∗ (see text).

between classic s-wave or d-wave behaviours: κa increases linearly withH at low magnetic

fields, and then speeds up towards Hc2. The linear increase, as opposed to the variation

proportional to density of states, N(EF )∝
√
H, may indicate notable variation of the

mean free path with field. A similar almost linear H-dependence of κ is observed in

Sr2RuO4 [216, 93] and UPt3 [203], for both of which a horizontal line nodes in their gap

symmetries were suggested, which may bear some similarity to our case. It has been

shown that in the superconductors with line nodes, κ increases linearly with H in the

superclean regime, where the condition Γ
∆
<< H

Hc2
is satisfied [93].

Inter-plane thermal conductivity, on the contrary, closely follows expectations for the

superconductors without nodes, Fig. 7.3(lower panel). As shown in the Fig. 7.4 variation



Chapitre 7 : Multi-Component Order Parameter in CeIrIn5 97

0.0 0.1 0.2 0.3 0.4
0.1

0.2

0.3

0.4

0.5
CeIrIn

5

  H||c

 H=0T

H=0.05T

H=0.07T

H=0.1T

H=0.2T

H=0.4T

H=0.437T

H
c2

~0.5T

 

 

κ c
 /
 κ

a

T [ K ]

T*

Figure 7.5: Temperature dependence of the anisotropy ratio κc/κa of highly pure
crystals CeIrIn5, in various applied magnetic fields (H‖c). Solid arrows show Tc at any
related applied field; with increasing field Tc is decreasing. Note to H=0.2 T that does
not show a clear transition at Tc ∼ 0.32 K and instead we observe a transition at much
lower temperature nearly 0.136 K, called T ∗ that is shown with dashed arrow.

of κc with field is dramatically different. Since these two configurations are different

only in the direction of the current flow, we must take that the quasi-particles, although

generated by the magnetic field, cannot move along c-axis in the superconducting state in

pure samples. The only possible explanation to this fact is that nodal quasi-particles are

localized near the regions where their movement is hindered by the whole superconducting

gap for all possible directions. This is again consistent with the horizontal line node, as

suggested from anisotropy of thermal conductivity in zero field.

7.3.2 Anisotropy of thermal conductivity

Fig. 7.5 shows the anisotropy of thermal conductivity, κc/κa, as a function of temperature

in various applied magnetic fields (as determined from the κa and κc data shown in

Fig. 7.3). (Zero field and normal state anisotropy was discussed in Chapter 5).
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For a hybrid Eg gap structure, the anisotropy of thermal conductivity was calculated

by Fledderjohann [60], Norman [155] and recently by Vekhter and Vorontsov [225]. All

calculations predict an immediate decrease of anisotropy below Tc. This is indeed seen

for fields H=0.4 and 0.437 T in Fig. 7.5. However, at low magnetic fields, 50, 70 and

100 mT, an increase is observed below Tc. This increase can be due to inelastic scattering

(as discussed in Chapter 5), and/or notable difference in the gap structure as compared

to low temperatures.

In Fig. 7.5 the superconducting transition temperature, Tc, and a new characteristic

temperature T ∗, below which anisotropy starts to decrease, are labeled with solid and

dashed arrows respectively. In intermediate field of 0.2 T crossing Tc = 0.32K does not

reveal any change in the anisotropy before reaching T ∗(0.136K). Thus we conclude that

the anisotropy characteristic of hybrid gap structure is found only below T ∗.

7.3.3 Summary

In-plane and inter-plane thermal conductivity in H ‖ c configuration reveal qualitatively

different field dependence in T → 0 limit. These are consistent with the hybrid Eg

gap structure with equatorial line node and polar point node. This anisotropy becomes

evident below some characteristic temperature T ∗.

7.4 Magnetic field parallel to the conducting plane,

H‖ab
In Fig. 7.6(left) we present inter-plane thermal conductivity of CeIrIn5 in magnetic field

parallel to conducting plane. The same high purity sample was studied in H ‖ c config-

uration, as presented in Fig. 7.3. There are three features in this figure:

High temperature (near Tc)

i) In both configurations, application of magnetic field reveals a clear kink in κ/T at

Tc, which was not visible in zero field (The kink is steeper in H‖c direction). This is

a usual behaviour in conventional superconductors and has been also seen in the heavy

fermion UPt3 [203].

ii) At temperatures near Tc, κ first decreases at low fields as a function of magnetic

field, and then increases up to its value in the normal phase. This behaviour is more
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Figure 7.6: Left : The inter-plane thermal conductivity κc/T of pure CeIrIn5 in zero
and various magnetic field up to Hc2 (H⊥c). With applying magnetic field two kinks are
appeared; the first steep one is at the superconducting transition temperature, Tc, and
the second one, placed at very low temperature, nearly at 80 mK, that might be because
of multi-component of order parameter. This anomaly can be seen in highly pure samples
and when the field is in the ab plane. Right : The inter-plane thermal conductivity as a
function of magnetic field in field orientation H⊥c.

obvious in high purity single crystal, and in the magnetic field in the ab plane; see

Fig. 7.6(left). We reproduced measurements on two more c-axis samples with lower

purity; ρ0c ≈ 1 and 2µΩcm (ρ0c ≈ 0.5µΩcm is for the purest sample shown in the figure.).

We observed that the drop in κc near Tc at low fields become progressively weaker with

increase of residual resistivity. This observation supports the view that the origin of

suppression of κ with field may be similar to the case of conventional superconductors

where it has been attributed to the extra scattering of quasiparticles from the vortex

cores [122]. This effect would be compensated at higher fields by an increase in the

number of carriers. Also this mechanism would be more obvious in the very pure samples

so that the mean free paths is greater than the distance separating vortices at low field

where vortices can be treated as independent scattering centers [30].

In a simple model for low fields [122], the decrease in the thermal conductivity due

to this process is expressed as:

1/κ = 1/κ0(1 +
Bld(1 + sin2 θ)

2Φ0

) (7.3)
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where κ0 is the zero field conductivity, Φ0 is the flux quantum, l is the mean free path in

the superconducting state, d is the vortex effective diameter, and θ is the angle between

heat current and magnetic field directions. According to this simple model, the scattering

of quasiparticles is more effective when the electrons move perpendicular to the vortices

(θ = 90o, J‖cH‖a) as compared to when they move along the vortices (θ = 0o, J‖H‖c)5.

The decreasing of κ at low fields can be seen well in the Fig. 7.6(right). Fig. 7.6(right)

shows the H dependence of κc of a sample measured in the ab plane (H‖ab) field direc-

tions. At intermediated temperatures, κc(H) shows a minimum at low fields. This type

of scattering was reported in the simple type-II superconductors, such Nb [122], in HF

UPt3 [30, 88] and Sr2RuO4 [93].

Low temperatures (0 << T << Tc ∼ 80 mK )

iii) In Fig. 7.7 (a) we zoom the low temperature part of κc vs T data of Fig. 7.6(left).

The κc/T reveals a clear second feature/kink at low temperature (∼ 80 mK), when the

field is in the ab plane. The position of this anomaly is shown by arrow in Fig. 7.7 (a-d).

This sharp feature can signal phase change in the superconductor with multi-component

order parameter. As summarized in the H − T phase diagram, Fig. 7.13, the position of

this kink at various applied fields constructs a new phase inside of the superconducting

dome.

The low temperature phase in the phase diagram in Fig. 7.13 shows the physical

properties (anisotropy, response to doping and magnetic field along c-axis) consistent

with Eg(1, i) state, as discussed previously. The high temperature phase does not reveal

characteristic anisotropy of the horizontal line node and thus may have Eg(1,0) symmetry,

if the theoretical discussions on 2D representation models in 7.1.3 is considered, or dx2−y2

symmetry, if the accidental degenerate models discussed in 7.1.1 in page 93 is considered.

Here more discussion is given as follows.

Comparison with other group data

Quite recently Matsuda group [100] have measured the in-plane thermal conductivity

in magnetic fields H rotated relative to the crystal axes. They found a fourfold oscillation

when H is rotated within the ab-plane, while no oscillation was observed within the bc-

plane, at the lowest measured temperature T=0.2 K (see Fig. 7.8). They suggested a

5However, in our in-plane thermal conductivity study on single crystals, J‖aH‖a and J‖aH‖c (not
shown here), we did not see this effect well.
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Figure 7.7: (a-d) κc/T of pure CeIrIn5 in zero and various magnetic field in H‖a. Under
applying magnetic field a kink appears at low temperature, is shown in arrow. (e-f) The
derivative of κc/T vs T . There is a plateau behaviour below transition temperature in
any applied magnetic field; no plateau in zero field. This plateau ends to a big jump at
low temperature, nearly 70-80 mK. The temperature at this jump, called ”minimum”, at
various applied fields leads to a new phase line in the phase diagram dome, called Tkink

(see Fig. 7.13).
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Figure 7.8: Angular variation of the in-plane thermal conductivity of CeIrIn5 measured
by Matsuda group [100] at T=200 mK with rotating H (a) within the bc-plane as a
function of polar angle θ (H = 0.05 T) and (b) within the 2D ab-plane as a function of
azimuthal angle φ (H = 0.10 T). The solid line shows the fourfold symmetry. (c) The
fourfold component, κ4φ, normalized by κn at T = 200 mK at H = 0.69, 0.5, 0.25, and
0.1 T. The upper critical field is Hc2 > 0.7T at this temperature (figure from [100]).

dx2−y2 gap symmetry (B1g symmetry) for CeIrIn5 and thus the same gap symmetry for

two reported superconducting domes in the phase diagram of CeRh1−xInxIn5 [100]. This

observation is consistent with our predicted multi component order parameter, where we

are suggesting a hybrid gap symmetry for low temperatures below 0.1 K. In other words,

to interpret the whole phase diagram in Fig. 7.13 it looks the accidentally degenerate

models may be applied; the system shows a d-wave symmetry (B1g) at high temperatures

and hybrid gap symmetry (Eg) at low temperatures.

Moreover, recent theoretical work on gap symmetry of CeIrIn5 by Maki et al., [135]

based on a weak-coupling BCS theory, at low temperatures, below T << 0.3Tc ∼ 0.12K,

shows a good consistency with our observation and in contrast to d-wave symmetry (see

Fig. 7.9) [135].

A similar low temperature anomaly has been observed in heavy fermion supercon-

ductors UPt3 in the κ(H) curves but no sign in the κ/T vs T plots was detected [30].

Line of anomalies in the thermal conductivity data of UPt3 tracks closely the anomalies
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Figure 7.9: Low temeprature thermal conductivity calculated for CeIrIn5 compound by
Maki et al. [135], based on weak-coupling BCS theory, compared with the experimental
data.

in the field dependence of ultrasonic attenuation [189] and sound velocity [4].

Similar anomaly was also observed in PrOs4Sb12 [92] (see Fig. 7.10). Here a clear

anomaly has been seen in κc/T vs T plot in zero field and when field was applied in the

ab plane. The existence of two distinct superconducting phases with different symmetries

was suggested according to an accidentally nearly degenerate model [151]. 6

7.4.1 κc vs H in T → 0 limit

Fig. 7.11 shows the H dependence of κc at constant temperatures of T = 45.41 and

T = 52.35 mK (H‖ab), and in T → 0 extrapolations. Because of very steep decrease

of thermal conductivity at the lowest temperatures, the latter were made assuming a

6Superconductivity with Tc = 1.8 K in HF PrOs4Sb12 with tetrahedral (Th) symmetry was discovered
by Bauer [27] in 2002. PrOs4Sb12 crystallizes in BCC structure. This is the first HF compound that
shows HF behaviour in light of the interaction of the electric quadrupole moments of Pr3+, rather
than local magnetic moments as in the other HF superconductors, with the conduction electrons [27,92].
Therefore the relation between the superconductivity and the orbital fluctuation of f -electron state (i.e.,
quadrupole fluctuation) has attracted great interest on this compound [27, 92]. Thermal conductivity
measurements in angle dependent magnetic field has revealed a multi-phase structure, characterized by
a gap function with point nodes [92]; the gap function at high field phase has six point nodes (phase A),
while that at low field phase has two point nodes (phase B). The theoretical calculation of the thermal
conductivity by Maki et al., has proposed a triplet p+h-wave superconductivity to interpret the data of
this compound [133,134]. Although, multi-band superconductivity also has been suggested [192]. More
information on this compound can be found in [151,14,46].
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superconducting gap symmetry of PrOs4Sb12 determined by angular variation of the
inter-plane thermal conductivity experiments. The filled circles represent the magnetic
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T 2 dependence of κc/T , as discussed in detail in Chapters 5 and 6 7. It is clear that in

T → 0 extrapolation κc/T remains close to zero at the lowest fields, while with further

field increase shows unusual double-hump structure. This is in marked contrast to the

behaviour in H‖c and in any known conventional superconductor. This is apparently

consistent with the transformation of the superconducting gap structure with magnetic

field, as depicted in Fig 7.12. In Fig 7.12 we compare the response of the inter-plane

heat transport of CeIrIn5 for two directions of magnetic field with the behaviour of

PrOs4Sb12, for magnetic field leading to phase transformation of the superconducting

state. PrOs4Sb12 shows two different superconducting phases in its phase diagram. Two

phases have point nodes in the gap structure. Interestingly enough, the two curves show

some similarity, however, low-field increase is much steeper in PrOs4Sb12.
8

7For extrapolation of κc/T to zero temperature, we used the theory of Graf [74] that predicts κc/T ∝
T 2 in the clean limit for hybrid gap symmetry. I fitted a few low T points data (2 to 5 points) with this
function, as shown by dashed lines in Fig 7.7. The error bars in Fig 7.11 come from the minimum and
maximum values of extrapolated residual linear terms.

8One point more that would be good to think on is, it looks κc near Hc2, has the same behaviour
for both directions of field; κc increases rapidly to reach to its normal state (see Fig. 7.12). We found
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Figure 7.11: κc/T as a function of H in fixed temperatures T=45.41 and 52.35 mK
(H‖a). The big difference in the residual linear term, nearly 5 mW/K2cm, at to nearly
close held temperatures confirms the steep increasing of κc vs T at low temperatures.
Note to the non smooth behaviour of κc in the whole range of applied field.

Quite recently, the thermal transport and field-angle-dependence specific heat mea-

surements of the heavy fermion compound URu2Si2, with body centered tetragonal

structure, shows hybrid Eg gap symmetry in the entire Brillouin zone [101, 237]. This

compound has two low temperature phase transitions, one at a ”hidden order” phase

TN=17.5 K and second a superconducting transition at Tc=1.5 K. The field dependence

of the in-plane thermal conductivity of URu2Si2 shows a nearly similar unusual behaviour

as we observed in CeIrIn5 (in Fig. 7.11), which was related to the behaviour of line and

point nodes (hybrid symmetry) under applied magnetic field [101].

nearly the same similarity for J‖a in H‖a and H‖c study; κa ∝ H near Hc2 for both field directions
(not shown here). The triplet SC Sr2RuO4 shows a linear and steep increasing of thermal conductivity
near its Hc2 for H‖c and H‖a field directions, respectively. The observation of different behaviour was
related to the difference of the vortex core structure [93].
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Figure 7.12: Low temperature behaviour of κc(H) in H‖a, compared with κc(H) in
H‖c, conventional s-wave superconductor Nb [122] and HF PrOs4Sb12 [192]. The com-
parison between PrOs4Sb12 and CeIrIn5 is striking, and supports multi-phases supercon-
ductivity in our system.

7.4.2 Phase diagram

The H−T phase diagram obtained from inter-plane thermal conductivity measurements

in H⊥c is shown in Fig. 7.13. Tc, the superconducting transition temperature, was de-

termined either from the steep kink at the superconducting transition temperature in

κc/T (Fig. 7.6(left)) or from κs/κn. Tkink have been determined by the second anomaly

in the κc/T (Fig. 7.7 (a-d)) (triangle-green signs) or a minimum in the d(κ/T )/dT vs T

curves (square-blue signs) (see Fig. 7.7 (e-f)). Both ways for determining Tkink at various

magnetic fields lead to a phase transition into the superconducting state, as shown in

Fig. 7.13. The low temperature phase with a strong gap anisotropy has a hybrid Eg

symmetry [193]. The high temperature phase which shows four fold symmetry by ther-

mal conductivity measurements might have d-wave symmetry [100]. This phase diagram

would be consistent with the theoretical accidental degeneracy models. Although, ac-

cording to the theoretical 2D representation models the Eg(1, 1) or Eg(1, 0) symmetries
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Figure 7.13: H − T phase diagram of c-axis CeIrIn5, determined by the thermal con-
ductivity measurements. Tc points have been determined in the different ways: from the
steep kink at the transition temperature in κ/T (Fig. 7.6 left) and κs/κn. Tkink have
been determined by the second anomaly in κ/T (Fig. 7.7 (a-d)) or a minimum in the
d(κ/T )/dT vs T curves (Fig. 7.7 (e-f)).

also can be possible.

There are few examples of superconductors with multiple phases. High-field phases

were observed in CeCoIn5 [33] and Sr2RuO4 [138,137], while several low-field phases were

observed only in UPt3 [97, 128] and PrOs4Sb12 [92]. The interesting point is that UPt3

and PrOs4Sb12 superconductors have point nodes in their gap symmetries, similar to

CeIrIn5.

7.5 T/
√
H scaling

As it was mentioned above, the scaling relation for thermodynamic and transport proper-

ties can be used as an additional test of the nodal structure. The scaling relation arises in

the assumption that all thermal excitations are confined to nodal regions in the gap and



Chapitre 7 : Multi-Component Order Parameter in CeIrIn5 108

1

2

3

1

1

2

κ
 [

 T
, 

H
 ]

 /
 κ

 [
 T

, 
0

 ] 200mT

CeIrIn
5

J||c H||ab

 

 

H=55mT

100mT

H=50mT

J||c H||c

 

 

 

 T/T
c
 (H

c2
/H)

0.5

(a)

(b)

CePt3Si

(c)

Figure 7.14: (a-b): Scaling relation plotted as κ(T,H)/κ(T, 0) ≡ F (x) for low magnetic
fields for J‖cH‖ab and J‖cH‖c as a function of x = (T/Tc)

√

Hc2/H. Note, even for two
nearly the same low fields 50 mT and 70 mT (black and blue) in H‖c (b), data do not
follow each other; no scaling. (c): The same scaling plot for a HF nodal superconductor
CePt3Si with Tc = 0.75K and Hc2 = 4T in J‖a H‖b configuration. Note that the data
in different magnetic fields collapse into the same curve (from [91]).

are not localized in the vortex cores. These relate the zero field temperature dependence

of thermodynamic and transport properties to their in-field behaviour. A scaling rela-

tion of the single parameter x = ( T
Tc

)
√

Hc2

H
is expressed as κ(T,H)/κ(T, 0) ≡ F (x), where

F (x) is a scaling function. The scaling is expected to be valid for T/Tc and H/Hc2<< 1.

As seen in Fig. 7.14(b), the data even for two very close low fields of 50 mT (circle-black)

and 70 mT (square-blue) do not follow each other. This finding that is consistent with

theoretical work, as no scaling for linear point node, supports the presence of point node

in the gap symmetry in conflict with the d-wave gap scenario.

Experimentally, scaling laws have been verified in the thermal conductivity of heavy-

fermion superconductors UPt3 [202] (for both κb and κc heat current direction) and

CePt3Si (κa in H‖b) [91]; see Fig. 7.14(c) as a example. These measurements are con-

sistent with theoretical calculations for line and quadratic point nodes. Hence, scaling
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relations can be regarded as one of the hallmarks of nodal superconductivity.

7.6 Conclusion

In conclusion, the measurements of the overall temperature and magnetic field depen-

dence of the inter-plane thermal conductivity, κc, in the mixed state of heavy fermion

superconductor CeIrIn5 shows a clear anomaly at low temperature. This anomaly is

most pronounced in the highest purity samples and in the magnetic field parallel to the

ab plane. The constructed H−T phase diagram of this feature suggests an existence of a

new phase inside the superconducting domain, as might be related to the two-component

order parameter in this material.

Supporting this interpretation, the field dependence of κc at low temperatures in H‖c
direction shows activated increase, while that for H‖ab direction is inconsistent with one

component theories. We also found break-up of scaling relation for c-axis conductivity

in T/
√
H variable, confirming the presence of a linear point node in the gap symmetry.



Chapter 8

CeIrIn5 : Quantum Criticality, A

Comparison with CeCoIn5

8.1 Introduction

It is believed that quantum fluctuations provide a glue for exotic superconductivity [139]

and drive materials to many different exotic phases. That is why the compounds, in

which quantum fluctuations play important role, attract great interest recently. A con-

venient way to enhance quantum fluctuations is to drive a transition temperature of

the continuous (second-order) phase transition to zero by some tuning parameter. A

point where this happens is called quantum critical point (QCP). When happening in

metals, quantum fluctuations lead to notable deviations from usual electronic behaviour,

described in a Fermi-liquid theory. The key results of this standard theory of metals are

the electronic specific heat which is linear in temperature, C(T ) = γT , and the electrical

resistivity showing a T square behaviour, ρ ∝ AT 2. The deviations occurring near QCP,

frequently termed as ”non-Fermi-liquid” (NFL) behaviour, lead to a diverging specific

heat coefficient γ(T ) = C/T , as either log(1/T) or Tα with α < 0, and a power law

temperature dependent resistivity ρ = ρ0 +AT n, with n different from 2. Heavy fermion

materials offer a unique opportunity to study quantum criticality in metals because of

the coexistence and competition of different ground states in their phase diagrams and

small, experimentally accessible energy scales involved.

Heavy fermion compound CeMIn5 shows various ground states and thus rich possi-

bilities for driving materials to QCP and magnetically mediated superconductivity. In

110
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CeCoIn5 a magnetic field can be used as a tuning parameter to drive material to a

QCP [164]. Interestingly enough, the critical field for this QCP coincides with the su-

perconducting upper critical field Hc2. A field-induced FL state is established below

some cross-over temperature, TFL, which grows linearly with the field H > Hc2. A sub-

linear temperature dependence of in-plane resistivity is seen at the critical field, while

the low-temperature behavior is described by T 3/2 exponent [163]. The coefficient of

the electron-electron scattering rate, obtained from resistivity and thermal conductivity

measurements, is found to diverge at H∗=Hc2 [163] in line with the divergent behaviour

of the electronic specific heat coefficient and effective mass in dHvA measurement at

this value of magnetic field [32, 191]. The field-induced QCP at Hc2 has been seen for

both directions of the magnetic field applied parallel and perpendicular to the tetragonal

c-axis [180]. This suggests that the presence of a quantum critical point, tied with the

upper critical field of superconductivity, Hc2, is not a coincidence and its study can be

insightful into the nature of critical fluctuations in the class of heavy fermion systems.

Since the two compounds CeIrIn5 and CeCoIn5 have similar electronic structures,

both calculated and experimentally determined by dHvA studies [78,54,129], it is inter-

esting to make a comparative study of the NFL behaviour in both compounds. Initial

characterization of CeIrIn5 found electrical resistivity in the normal state which is close

to T -linear [173], while the specific heat C/T weakly increases as the temperature ap-

proaches Tc, which might be consistent with Fermi-liquid behaviour [173]. A strong T 1/2

temperature dependence of the nuclear spin lattice relaxation rate, 1/T1, in the normal

state was explained by proximity to an AF instability [112]. These raise question about

possible field-tuning of critical fluctuations in CeIrIn5, similar to CeCoIn5. This chapter

is devoted to study of field-tuned effects in the normal state of CeIrIn5 in magnetic fields

scale of Hc2.

In this chapter, first we compare zero field in- and inter-plane electrical resistivities of

CeIrIn5 with each other and with CeCoIn5 and then study the normal state of the in-plane

resistivity and thermal conductivity of CeIrIn5, J‖a H‖c. A ρa ∝ T 1.2 behaviour was

found in zero field above Tc till 3K. It seems application of magnetic field does not change

the power law. A FL state was observed at low temperatures at Hc2 (bulk) and above.

A comparison with CeCoIn5 shows dramatic difference: in CeIrIn5 the inelastic electron-

electron scattering coefficient remains essentially unchanged through all the range of

applied magnetic fields, showing no divergence or QCP towards Hc2.
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Figure 8.1: (a) The in-plane and inter-plane electrical resistivity, ρa and ρc of CeIrIn5.
(b) Low temperature of the resistivity of three a-axis and two c-axis samples. Inset shows
zoom of the main plot at lowest temperatures.

8.2 General characterization

8.2.1 Experimental details

We measured the electrical resistivity of three a-axis and two c-axis samples from two dif-

ferent batches in this study (The thermal conductivity measurements in previous chapters

have been done on the same samples here), down to 40 mK and under applied magnetic

fields up to 11 T along the c-axis direction (H‖c). The zero field results fall exactly on

top of each other for a-axis samples and c-axis samples separately; see Fig. 8.1(b). The

dimension of samples are ∼ 4.5× 0.14× 0.045 mm3 and ∼ 2× 0.1× 0.01 mm3 for a-axis

samples and ∼ 1×0.15×0.086 mm3 and ∼ 0.6×0.15×0.086 mm3 for c-axis samples. The

electrical resistivity was measured with an ac resistance bridge, operating at a frequency

of 16Hz, by applying 0.1 mA excitation currents. For a- and c-axis current directions we

found Hc2 ≈ 3.7 T and ≈ 2.16 T , respectively. The residual electrical resistivity, ρ0, of

samples was about ∼ 0.3(0.5) µΩ cm at 40mK at magnetic field 4 T for a-axis (c-axis)

samples.

8.2.2 General characterization

High temperature
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Figure 8.2: Low temperature power law behaviour of the electrical resistivity of (a) ρa

and (b) ρc of CeIrIn5.

The temperature dependence of the electrical resistivity ρ of CeIrIn5 for two directions

of the electrical current, along a-axis in the tetragonal plane, ρa, and along tetragonal

c-axis, ρc, is shown in Fig. 8.1(a). On cooling from room temperature resistivity passes

through a maximum around 50 K that is typically attributed to the cross-over from inco-

herent scattering of conduction electrons at high T to the development of the correlated

bands at low T.

The resistivity at room temperature is ρ(room) ≈ 50 and 28µΩcm for c-axis and

a-axis current directions (Fig. 8.1(a)). The only previous resistivity measurement on

both c- and a-axis current directions at high temperature [195] show ρ(room) ≈ 67 and

44µΩcm, respectively. Although, the resistivity ratio is nearly the same in our data and

the previous reported measurement.

Low temperature

The low-temperature part of ρ is zoomed in Fig. 8.1(b) and in Fig. 8.2. We can see

from Fig. 8.1(b) that there is modest anisotropy in the electrical resistivity, ρc/ρa ∼ 3.

This anisotropy is temperature independent below 8 K down to Tc onset. This temperature-

independent anisotropy of electrical resistivity is consistent with the temperature-independent

anisotropy of thermal conductivity in the normal state, κa/κc ∼ 2.5 atHc2 ∼ 0.5 T, shown

in the previous chapters.
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Figure 8.3: (a) ρa vs scaled of ρc of CeIrIn5. (b) The same plot for CeCoIn5(data taken
from [162]).

At zero field, the electrical resistivity ρ(T ) above Tc is well described by the power law

behaviour ρ(T ) ∝ ρ0 + AT n, with n ∼ 1.2 and n ∼ 1.3 for a-axis and c-axis resistivities,

respectively (Fig. 8.2). This exponent can be tracked at low temperature up to 3.5 K,

while on further temperature increase the exponent decreases to 1 (only in a-axis trans-

port), for a short temperature range, and then becomes lower than 1. Nearly T -linear

resistivity, rather than quadratic temperature dependence as expected of a Landau Fermi

Liquid, has been suggested in consistency with the two dimensional AFM spin fluctu-

ations theory [82, 181]. The theoretical calculation on nearly antiferromagnetic metals

in the framework of a spin density wave scenario shows a power law resistivity with

temperature as ρ(T ) ∝ T 3/2 and ρ(T ) ∝ T for 3D and 2D spin fluctuations, respec-

tively [181]. Such NFL power law resistivity has been observed in some heavy fermion

systems which show quantum critical behaviour: quasi-2D system CePd2Si2 (n ∼ 1.2),

3D CeIn3 (n ∼ 1.5) [139] ,YbRh2Si2 and CeCu5.2Ag0.8 (n ∼ 1) [48, 83], and CeCoIn5

(n ∼ 1 at low field and 2/3 at high field) [163]. More discussion on the power law

resistivity behaviour will be presented in the inter-plane transport Chapter 9.

Different Tc between a− and c-axis transports

The electrical resistivity shows a different Tc for a- and c-axis current directions; resis-

tivity goes to zero at about 1.21 K and 0.8 K for ρa and ρc, respectively (Fig. 8.1(b-inset)).

This leads to different critical magnetic fields for these two current directions. The unam-
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biguous reproducibility of this behaviour, for three a-axis and two c-axis samples, makes

a doubt that this comes from any inhomogeneity or filamentary superconductivity as a

reason. It is interesting to note that the 0.1%La-doped a- and c-axis samples show the

same behaviour as the pure ones; different Tc for a- and c-axis current directions (see

Fig. 6.1).

The previous in-plane electrical resistivity measurements by Petrovic [173] reports

the same Tc and power law behaviour as ours in this study.

Scaling, transport anisotropy

In Fig. 8.3(a) we are comparing a- and c-axis resistivities while the c-axis is scaled.

The scaled c-axis data, blue line, completely fall on the a-axis ones in a large range of

temperatures, at least until 8 K. This shows a nearly isotropic electrical resistivity in

this compound (doing the same scaling for CeCoIn5 shows anisotropic behaviour (see

Fig. 8.3(b))).

8.3 In-plane transport in magnetic field, J‖a

Charge transport

In Fig. 8.4 and Fig. 8.5, the in-plane resistivity for different values of the magnetic

field is shown. A T 2 regime at low T is clearly observed for fields above Hc2, below

a crossover temperature TFL, corresponding to an onset of the Fermi-Liquid behaviour,

that grows with field. TFL goes roughly linearly from TFL=0.65 K to ∼ 1 K at fields ∼ 4

T and 11 T, respectively while the T 2 coefficient A, the slope of the FL regime, decreases

weakly; A ∼ 0.55 µΩ cm K−2 to 0.33 µΩ cm K−2. This nearly field independent of A

is consistent with the specific heat and the dHvA experiments, where there is a weak

field dependence of the finite electronic specific heat γ0 (for fields up to 10 T) and the

cyclotron effective mass, m∗, (for field between 6 to 17 T) at low temperature [38, 78].

Comparing with the closely related superconductor CeCoIn5, this behaviour is different,

in which magnetic field strongly affects on the properties of this material and strongly

suppresses A coefficient (from A=7.5 to 0.5 µΩ cm K−2 for fields ∼ 6 to 16 T) [164],

and the effective mass [191].

Power law in magnetic field
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Figure 8.4: Temperature dependence of the in-plane electrical resistivity of CeIrIn5 at
different magnetic fields 0, 4, 8, 11 T oriented along c-axis. Inset: compared with the
same plot of Co-115 [164].

With the application of the magnetic field up to 11 T (Fig. 8.4), nearly the same power

law behaviour for resistivity extents up to 5 K. In other words, there is no evolution of

the power law in the range of applied magnetic field in CeIrIn5, in contrast to CeCoIn5

that its in-plane electrical resistivity shows different power law resistivity for low and

high magnetic field in the normal state [163].

Thermal transport in the FL regime

To reach to near bulk Hc2 in CeIrIn5 and investigate of field-tuned quantum criticality

at Hc2, we did thermal conductivity measurements. The inset of Fig. 8.6(left) shows the

thermal resistivity of CeIrIn5 vs. T 2, obtained from thermal conductivity data, for fields

H ∼ Hc2=0.5 T and higher field 4 T. As we see, at H=0.5 T there is Fermi liquid

behaviour at low temperature and this regime is expanding slowly with increasing of

the magnetic field, which is consistent with our resistivity data. The field dependence

of the T 2 Fermi liquid coefficients of charge (A) and heat (B) transport is shown in
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(Hc2 ∼ 3.6 T), 8 and 11 T (H ‖ c). The solid lines represent the T 2 fits to data in a range
below TFL indicated by arrows. The slope of these lines is the inelastic electron-electron
scattering coefficient, A.

Fig. 8.6(right). In this plot is seen both A and B coefficients are consistent with each

other and decrease smoothly with increasing of the field. This weak field dependence is in

contrast to the case of closing to a QCP that is expected to see divergent behaviour for A

and B coefficients [163]. Observation of the same critical behaviour for these coefficients

in CeCoIn5 is interpreted that the critical fluctuations are of magnetic nature in this

compound [163].

Kadowaki Woods Ratio

To have better feeling about the value of scattering rate in CeIrIn5 compare to other

HF systems, we calculate a known FL ratio. In heavy fermion systems, the A coefficient is

found to be roughly proportional to γ2
0 and the empirical ratio of rKW ≡ A/γ0

2, known as

the Kadowaki-Wood ratio, has been shown to have a nearly universal value of about a0 =

10 µΩ cm mol2 K2/ J2 = 1.0×10−5 µΩ cm mol2 K2/ (mJ)2 in these systems [99,144]. We

obtain the value of this ratio, ∼ 0.1a0 at near Hc2 for Ir-115, considering A ∼ 0.5 µΩ cm

and γ0=720 mJ/molK2. This value is nearly small compare to the universal value for
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Figure 8.6: (Left) The thermal conductivity of CeIrIn5 vs T in normal state. Inset
shows the thermal resistivity L0T/κ vs T 2, for fields 0.5 and 4 T. The solid lines represent
the T 2 fits to the data in a range below TFL indicated by arrows. The slope of these
lines is the inelastic electron-electron scattering coefficient B. (Right) Field dependence
of the T 2 Fermi-liquid coefficients of charge (A) and heat (B) transport. The cross is
e-e scattering coefficient (A) from resistivity and the red-bold square is e-e scattering
coefficient (B) taken form thermal conductivity measurements. Inset: compared with
the same plot of Co-115 [164].

heavy fermion systems [99, 144]. In CeCoIn5, for instance, this ratio is about 0.52 a0 at

Hc2 ∼ 6T that falls on the universal line for other heavy fermions [164].

Magnetoresistance

As the Fig. 8.7 and Fig. 8.4 show the magnetoresistance is small above 1 K and there

is a different magnetoresistance behaviour at very low temperature; with increasing the

field, the sample shows a positive magnetoresistance, nearly 70% for applied magnetic

field 8 T compared to 4 T at the lowest temperature. As was shown in CeCoIn5 this

resistance increase at the lowest temperatures can be orbital in origin, which should be

large in the samples as pure as CeIrIn5.

Look at the high temperature in Fig. 8.7(or Fig. 8.4), MR is very weak above 1 K up

to applied fields nearly 12 T; there is a positive magnetoresistance from zero till to 5 T

and then it becomes negative for field above 5 T. On the other hand, CeCoIn5 shows a

pronounced crossover from positive to negative magnetoresistance at high temperature
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Figure 8.7: Field dependence of the in-plane resistivity of CeIrIn5. ρ(H) increases by
magnetic field as ρ(H) ∝ aH = 0.06H at low temperature.

(It is interesting to note the peak in ρ − H curve in CeCoIn5 is around of H=4-5T at

T=2.5 K, too.). This magnetoresistance crossover was interpreted as an indication of a

change in the character of spin fluctuations with increasing field strength and its possible

link to field-tuned QCP was pointed out [164]. The initial increase of ρ with field might be

related to an increase of spin disorder. The presence of a large external field is expected

to have a strong influence on AFM spin fluctuations [148] (However there is no evidence

for long-range AFM order in CeCoIn5 or CeIrIn5 [84]). Therefore, a crossover to negative

MR might occur at progressively increasing fields at higher temperatures, as observed in

CeCoIn5 [162]. 1

8.3.1 Comparing heat and charge transport, δ(T ) and Lorenz

ratio, L/L0

Here to better investigate of effect of magnetic scattering on conduction electrons in

CeIrIn5 and to compare it with CeCoIn5, we compare the thermal and electrical resistiv-

ities with each other. In Fig. 8.8 we are comparing the electrical resistivity, ρ, with the

thermal resistivity, w ≡ ρthe ≡ L0T/κ (the electronic thermal resistivity, we ≡ L0T/κe,

1It is interesting to note that in the spin fluctuations theory of weakly AFM metals in the calculation
of magnetoresistance, a peak is predicted in the ρ −H curve at the critical field of transition between
antiferromagnetism and ferromagnetism [148].
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Figure 8.8: (a) In-plane electrical and thermal resistivity of CeIrIn5 at magnetic field 4
T oriented along c-axis. (b) Difference between thermal (w ≡ L0T/κ) and electrical (ρ)
resistivities, δ(T ) ≡ w(T )− ρ(T ) with and without phonon corrections. (c) Temperature
dependence of normalized Lorenz ratio, L/L0.

is obtained by subtracting the phonon contribution via measuring 20%La-doped CeIrIn5

sample, that was explained in the Appendix C).

From (a) and (c) parts in Fig. 8.8 we observe that the Wiedemann-Franz law L(T ) =

L0 is satisfied in the elastic regime, T → 0, at applied H = Hc2 ∼ 4 T ; w → ρ in the limit

T → 0. However in the inelastic regime, nearly above 1 K, we can see L/L0 ∼ constant

vs T up to 4 K. In closely related compound CeCoIn5 Lorenz ratio goes back to zero at

T ≡ Tsf ∼ 5 K. In CeRhIn5, an AFM compound in the same family, this quantity also

goes to zero at Tsf = 8 K.

Furthermore, in Fig. 8.8(b) we are comparing theses two resistivities with looking at

their difference, δ(T ) ≡ we(T ) − ρ(T ). We observe a linear temperature dependence of

δ(T ) vs T up to highest measured temperature 4 K, which is a fundamentally new result

in 115 family. Recent work on a 3D weak FM compound ZrZn2 shows the same linearity

of δ(T ) vs T [208]. Moreover, c-axis transport of CeCoIn5 [215] and antiferromagnet

YbRh2Si2 (measured by J.-P. Reid et al., in our group), two heavy fermion with AFM

quantum critical point, show also a linear temperature dependence for δ(T ) at low tem-

perature. It is interesting to note that both compound show colinear behaviour in their

magnetic structure. Recent NMR and NQR measurements on YbRh2Si2 strongly suggest

the presence and competition of FM spin fluctuation with AFM spin fluctuations in the

vicinity of the QCP near H =0.5 KOe [90]. In AFM metals the δ(T ) is proportional to
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Figure 8.9: The phase diagram of CeIrIn5 for J‖a H‖c current and field configuration,
obtained by electrical resistivity and thermal conductivity measurements. Inset show
zoom at very low temperature and low magnetic field. Solid circles and squares obtained
by charge and heat transport measurements, respectively.

T 2 at low temperature, because of ρ(T ) = ρ0 + AT 2 and we(T ) = w0 + BT 2 (so-called

Fermi-Liquid regime). In AFM metal CeRhIn5 Paglione et al., [165] found that δ(T )

shows a aT 2 + bT 5 behaviour below the Neel temperature and then goes to zero at high

temperature at T ≡ Tsf . The T 5 contribution was interpreted as strongly scattering of

conduction electrons by fluctuation of local magnetic moments [165].

In CeCoIn5, δ(T ) goes to zero at T ≡ Tsf ∼5 K at applied field Hc2. Going to zero of

the difference of the electrical and thermal resistivities signals the presence of AFM spin

fluctuations in the system [165].

Thus with observation of a linear temperature dependence of the difference of electri-

cal and thermal resistivities in CeIrIn5, it looks the type of spin fluctuations or magnetic

scattering are nearly different in CeIrIn5, compared to the suggested AFM spin fluctua-

tion in this family. More discussion will come in the inter-plane transport Chapter 9.
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8.4 H − T phase diagram (J‖a)
Fig. 8.9 shows T − H phase diagram of pure CeIrIn5 compound for J‖a and H‖c cur-

rent and magnetic field configuration. The diagram has been obtained from the whole

electrical and thermal conductivity measurements in this study. Inset shows the phase

diagram from the thermal conductivity measurements (bulk measurements).

There is nearly unchanged power law temperature dependent of electrical resistivity

in the normal state, ρa ∝ T 1.2. Co115 shows different power law behaviour in the normal

state. While a-axis transport shows two different power law temperature dependence,

ρa ∝ T and ρa ∝ T 2/3 at low and high magnetic fields, respectively, the c-axis transport

shows a linear temperature dependence in the whole range of applied fields, ρc ∝ T .

It means the H − T phase diagram of CeCoIn5 shows anisotropic behaviour in contrast

with isotropic behaviour in CeIrIn5 (see inter-plane transport of CeIrIn5 in next chapter).

This raises a question to think on; is there any relation between quantum criticality and

transport anisotropy?

Moreover, the observation of an strongly anisotropic violation of WF law in Co115,

while WF law is obeyed for a-axis transport at Hc2, J‖aH‖c , it is violated for c-axis

transport, J‖cH‖c, in contrast to verification of WF law for both a- and c-axis current

directions at Hc2 in Ir115, is another issue that seems is consistent with other our find-

ings in these two compound; more isotropic transport behaviour in Ir115 vs anisotropic

transport behaviour on Co115.

8.5 Conclusion

In conclusion, in-plane charge and heat transport measurements of CeIrIn5 in magnetic

field around Hc2 revealed FL behaviour at low temperature for the field out of the plane

(H ‖ c) orientation. The electron-electron scattering rate is nearly field independent;

there is no divergent electron-electron scattering behaviour and QCP at Hc2 in CeIrIn5

in spite of the presence of NFL behaviours in the normal state and similarity to the

electronic band structure to CeCoIn5; CeCoIn5 shows a large enhancement of effective

mass and a huge inelastic e-e scattering at Hc2.

Moreover, we find a linear temperature behaviour for the difference of the electrical

and thermal resistivities, δ(T ). It seems this linearity is not consistent with the AFM

spin fluctuations theory.



Chapter 9

CeIrIn5 : Quantum Criticality at

High Magnetic Field

In the previous chapter we found no quantum criticality at Hc2 of CeIrIn5, in contrast

to CeCoIn5 which shows a field-tuned QCP at Hc2. Non Fermi liquid behaviours of

physical properties in the normal state of CeIrIn5 raises questions about the source of

these behaviours.

In this chapter we study the normal state of the inter-plane charge and heat transport

of CeIrIn5 down to 40 mK and under applied magnetic fields up to 17 T along the c-axis

direction (H‖c). We find an anomalous T 4/3 power law resistivity, ρc(T ) = ρ0 + AT 4/3,

in the high field non-Fermi liquid regime in a large temperature range, which suggests

the presence of ferromagnetic spin fluctuations that lead to quantum phase transition

in this compound. We suggest that this is one of the main factors that causes different

behaviour among the materials in 115 family.

9.1 Inter-plane transport in magnetic field, J‖c

Magnetoresistance

Fig. 9.1 shows the c-axis electrical resistivity in zero and various magnetic fields. At

low temperature below 1 K magnetoresistance is nearly weak consistent with the thermal

conductivity measurements.

At high temperatures, magnetoresistance is very weak until H = 4 T while above this

123
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Figure 9.1: Main panels: Temperature and field dependence of the inter-plane electrical
resistivity of CeIrIn5 in magnetic fields oriented along c-axis. Inset-left: the same plot
for CeCoIn5 [162].

field there is a large negative magnetoresistance, which is in contrast to a-axis transport

that shows weak negative magnetoresistance in the temperature and magnetic field range

(Magnetoresistance is nearly 6% and 20% between H = 4 T and 10T at T = 2.4 K for

a- and c-axis electrical transport, respectively.). This large negative c-axis magnetoresis-

tance at high temperature behaves very similar to the c-axis transport of Co115 under

applied field (see inset Fig. 9.1). In Co115, there is no magnetoresistance in the c-axis

electrical resistivity up to applied fields Hc2 ∼ 5.5 T and above this field there is large

negative magnetoresistance. Negative magnetoresistance is related to the ordering spins

in applied magnetic field [162].

Magnetization measurement for [001] direction of magnetic field and at T=4.2 K in

CeCoIn5 shows a continual increase of magnetisation up to 50 T, showing no obvious sign

of field-induced ferromagnetism order [195]. The absence of any saturation in M(H) until

at least 50 T suggests that the strength of AFM correlations is strong in this compounds,

even in the absence of long-range AFM order [162]. However, a weak metamagnetic
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Figure 9.2: (a) The inter-plane thermal conductivity vs T . Inset shows the thermal
resistivity vs T 2. Arrows show the end of T 2 regime, TFL. (b) The inter-plane electrical
resistivity vs T 2 at magnetic fields oriented along c-axis. Note to the FL region at low
fields. At high field 11.5 T, the FL region is narrowed or disappeared in both heat and
charge channels.

transition is found in CeIrIn5 around 29.5 T at measured temperature 45 mK [168,108].

This metamagnetic-like increase shifts to higher fields and becomes broad with increasing

the temperature [211]. Moreover, for this direction of the field a clear hysteretic behaviour

at fields above 37 T has been observed. The origin of this ferromagnetic-like behaviour

in CeIrIn5 is not known so far [168].

FL regime at low T

In Fig. 9.2, the inter-plane thermal conductivity and electrical resistivity in the normal

state for different values of the magnetic field is shown. Like a-axis transport shown in

Chapter 8, a T 2 regime, in both the electrical and thermal resistivities, is observed for

fields above bulk, Hc2 = 0.5 T (inset of Fig. 9.2(a)), and above resistive critical fields,

Hc2 = 2.16 T (Fig. 9.2(b)), below a crossover temperature TFL.

It looks TFL grows with field up to H = 4 T (Fig. 9.2(b)); TFL ∼ 0.335 K, 0.575 K
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and 0.7 K at fields ∼ 3.15, 3.6 and 4 T, respectively, while the T 2 coefficient A, the slope

of the FL regime, decreases weakly; A ∼1.82, 1.63, 1.50 and 1.45 µΩ cm K−2, for fields

H = 2.25, 3.15, 3.6 and 4 T, respectively. From thermal conductivity measurement, we

find TFL ∼ 0.39K for fields H ∼ Hc2 = 0.52 T and 4 T (the T 2 coefficient, B, is nearly

∼2.36 and 2.75 µΩ cm K−2 for H = 0.52 and 4 T, respectively.). Nearly twice bigger

thermal coefficient B compare to electrical coefficient A is usual in metals; for any type

of electron-electron scattering process it is reported L(T ) ≡ ρ(T )−ρ0

we(T )−w0

= A
B

≈ 0.5. See

more information in this regard in [162].

Power law ρc ∝ T 4/3

The interesting point here, it is difficult to detect any T 2 regime at higher fields

above 4 T, both in charge and heat transport measurements. It seems with applying

higher magnetic fields on c-axis samples, the T 2 regime holds only in a very narrow low

temperature range, or at all, and the electrical resistivity shows a pure power law T 4/3

in a large temperature range, up to 7 K at 12T (Fig. 9.3). Note the resistivity increases

nearly 40-fold in the temperature range between zero and 5 K (from nearly 0.25 µΩcm

at 0 K to 10 µΩcm at 5 K). The inter-plane electrical resistivity of CeCoIn5 at the QCP

(Hc2 = 5.3 T) shows a purely linear T dependence, from 0.4 µΩcm at 25 mK all the way to

40 µΩcm at 16 K, nearly 100-fold increase in resistivity (nealry 60-fold increase between

0 K and 5 K). This huge increase in resistivity in this temperature range was suggested

as a strong prove that the power law is an intrinsic property of electrons scattered by

critical fluctuations [215]; see Fig. 9.5. In UPt3, showing NFL behaviour in physical

properties at the metamagnetic transition ∼ 20 T, the resistivity increases nearly 10-fold

at the critical regime between 0.5 K and 3 K, where the resistivity shows a ∼ T 1.2 power

law [109]. In the itinerant ferromagnet ZrZn2, a metal close to a 3D ferromagnetic critical

point, resistivity only increases nearly 3-fold between nearly T = 0 K and 12 K, where the

resistivity shows a T 5/3 power law consistent with 3D FM spin fluctuation models [208];

see Fig. 9.5.

To understand the meaning of the 4/3 power law found in CeIrIn5, lets have a look

at the theoretical models:

Theoretical investigation of the spin fluctuations effect on the electrical and thermal

resistivities of nearly antiferromagnet and weakly ferromagnet metals have been started

in early 70‘s [221, 148, 220]. The self-consistent renormalization (SCR) theory of spin

fluctuations, has been succeeded in extensive explanations of physical properties. The
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Figure 9.3: Inter-plane electrical resistivity vs T (top) and T 4/3 of two CeIrIn5 samples
(bottom) at magnetic field 11.5 T oriented along c-axis. Insets: show zoom of the main
panels.
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Figure 9.4: Inter-plane electrical resistivity vs T 4/3 of CeIrIn5 sample at magnetic fields
4, 8, 11.5, 15, 17 T oriented along c-axis.
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Figure 9.5: A comparison between the power law electrical resistivity of CeIrIn5 at
a high magnetic field, H‖c (a), CeCoIn5 at its QCP (b) and the itinerant ferromagnet
ZrZn2, a metal close to a 3D ferromagnetic critical point (c). The inter-plane electrical
resistivity of CeCoIn5 at the QCP (Hc2 = 5.3 T,H‖c) shows a purely linear T dependence,
from 25 mK to 16 K, and nearly 100-fold increase in resistivity [215]. In ZrZn2 the
resistivity shows a T 5/3 power law consistent with 3D FM spin fluctuation models [208].

idea in the model is based on considering two isotropic bands, s- and d-band electrons. In

this model, only the s-electrons contribute to the conductivity and the d-electrons play a

role of scattering the s- electrons, i.e., the conduction electrons are scattered by the spin

fluctuations of the d-band electrons via an s-d exchange interaction [221].

The electrical and thermal resistivities of 3D nearly ferromagnetic metals have been

calculated by Ueda and Moriya for the whole temperature range of interest including

a ferromagnetic phase [221]. In the limit of zero temperature they obtained a T 2 tem-

perature dependence for the electrical and thermal resistivities. The temperature range

of these T 2 power laws becomes narrow and the coefficients of them are large when the

system approach the ferromagnetic instability (critical boundary). As the temperature

increases these quantities show ρ ∝ T 5/3 and w ∝ T 5/3 + T . Thus one can find a linear

temperature dependence for difference of the electrical and thermal resistivities, δ(T ) ∝ T

for nearly ferromagnetic metals. In brief, it has been pointed out that the ∆ρ(T ) ∝ T n

with n = (d + 2)/z, where d is the effective dimension of spin fluctuation spectrum and

z is the dynamical exponent. Thus with z =3 for ferromagnetic spin fluctuations it can

be found n =5/3 in three dimension and n=4/3 in two dimension. 1

1In the calculation by Ueda and Moriya [221,148] they pointed out that the resistivity at the critical
boundary, ∆ρ ∝ T 5/3 or ∝ T 4/3 show no discontinuity at the Curie temperature, while the derivative
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Figure 9.6: A comparison between in-plane and inter-plane (a) δ(T ) ≡ we(T ) − ρ(T )
and (b) normalized Lorenz ratio, L/L0, in CeIrIn5.

The excellent fit to a pure T 4/3 power law of c-axis electrical resistivity in a large

temperature range at high field, indicates the system is closing to a QCP existing at

higher fields. More evidence that the T 2 coefficient in the electrical resistivity, after

decreasing in field and obtaining the lowest value at H = 4 T, obtains a larger value at

H = 11.5 T (see inset Fig. 9.2(a), for example). Thus, it seems our results suggest the

importance of the effect of FM spin fluctuations in CeIrIn5 which lead to quantum phase

transition, mostly in the c-axis transport.

δ(T ) ∝ T and L(T )
L0

∝ constant

Furthermore, like the a-axis transport (see 8.3.1 in previous chapter), looking at the

difference between the effect of scattering on the electrical and thermal current also can

help us to understand the nature of scatterings on this material. Observing a linear

temperature behaviour of δ(T ) (Fig. 9.6(a)) can guide us to expect the presence of FM

type of spin fluctuations in this compound (see 8.3.1 in Chapter 8).

The Lorenz ratio, L/L0, for both current directions shows an independent temperature

behaviour up to 4 K (Fig. 9.6). In AFM metal CeRhIn5 this quantity goes back to 1 at

the characteristic spin fluctuation temperature, Tsf (see 8.3.1 in Chapter 8).

Kadowaki Woods Ratio, J‖c
shows, which is very small in weakly ferromagnetic metals.
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Figure 9.7: Derivative of inter-plane resistivity of CeIrIn5 vs T for various magnetic
fields (H‖c, Hc2 ∼ 2.16 T ), compared with CeCoIn5 (J‖aH‖c) (data taken from [162])
and CePd2Si2 [77]. Electrical resistivity of CeCoIn5 shows a clear curvature at T ≡ Tsf

for magnetic fields Hc2 and above it. The Tsf (shown as dotted arrows), the character-
istic temperature of antiferromagnetic spin fluctuations, is increasing with field in this
compound. There is a curvature below 8 K in CeIrIn5, too (Left). By applying high
fields the anomaly is disappeared. Note to the similarity of the derivative behaviour of
the resistivity in CeIrIn5 to of AFM metal CePd2Si2 (Right).

We obtain the value of the Kadowaki-Wood ratio for c-axis current direction nearly

0.35a0 (a0 = 10 µΩ cm mol2 K2/ J2) at near Hc2 ∼ 2.5 T . It is interesting to note this

value for c-axis transport, is comparable to the universal value for other heavy fermion

systems [99,144].

Low temperature anomaly in the electrical resistivity

Fig. 9.7 shows derivative of the electrical resistivity vs temperature in various magnetic

fields. It seems there is an anomaly below T ∼= 8 K at low fields. By applying high field

17 T the anomaly is disappeared. To have a better meaning of this anomaly, we made a

comparison with CeCoIn5. The electrical resistivity of CeCoIn5 shows a clear curvature

at T ≡ Tsf ∼ 5 K at Hc2 ∼ 5.5 T [162]. The related derivative of resistivity for CeCoIn5

compound is shown in Fig. 9.7; the derivative start to increase around Tsf ∼ 5 K at

H = 6 T. Tsf is a characteristic temperature of the AFM spin fluctuations, a temperature

that above it the fluctuations have insufficient energy to scatter electrons [166]. It seems

this characteristic temperature increases with increasing magnetic field in CeCoIn5 [166].

Coming back to CeIrIn5, the observed anomaly around 8 K may related to this kind



Chapitre 9 : CeIrIn5 : Quantum Criticality at High Magnetic Field 132

of magnetic characteristic temperature, or may related to different type of magnetic

scattering, say FM spin fluctuation scattering, compared to AFM scattering found in

CeCoIn5 [164]. Although, the evolution of the anomaly by field in CeIrIn5 looks differently

in comparison with CeCoIn5’s. Thus, the latter reason looks more reasonable.

H − T phase diagram (J‖c)

Fig. 9.8 shows T − H phase diagram of pure CeIrIn5 compound for J‖c and H‖c
current and magnetic field configuration. We see a Fermi liquid regime at Hc2 at low

temperatures. However, the FL temperature shows a different behaviour in applied field

compared to other heavy fermion compound; with increasing field above H ∼ 4 T we see

the FL region is decreasing. At high magnetic field the power law electrical resistivity

shows a pure T 4/3 till to nearly 8 K at H = 17 T. In the theoretical treatment this power

law indicates the presence of 2D FM spin fluctuations that scatter conduction electrons.

For the first time this unusual behaviour (decreasing of TFL with field) has been

reported in the a-axis electrical resistivity and specific heat measurements by Capan et

al. [38]. Actually they observed this unusual behaviour at applied magnetic fields above

12 T in the electrical resistivity measurements and no information below this value of

magnetic field in this measurement. They als observed a logarithmic divergence behaviuor

of C/T at low temperatures in magnetic fields above 12 T much larger than Hc2(0) [38],

suggesting that there might be a field induced quantum-critical point near H = 25 T,

which is where a metamagnetic transition [108] in CeIrIn5 also extrapolates to T = 0 [38];

see Fig. 9.9.

9.2 ρ ∝ T 4/3 in systems with co-linear magnetic struc-

ture

By a comparison between CeIrIn5 compound and other heavy fermions, we found that

the electrical resistivity of a few systems shows the strange power law temperature de-

pendence ρ ∝ T 1.3 ∼ T 4/3 in the proximity of their quantum critical point. There is no

real interpretation for this power law behaviour so far. The more interesting point is that

all these compounds seem to have a co-linear magnetic structure.
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Figure 9.8: The phase diagram of CeIrIn5 for J‖c H‖c current and field configuration,
obtained by electrical resistivity and thermal conductivity measurements. Insets show
the electrical resistivities at a low magnetic field (H = 4 T), where there is a FL regime
at low temperature and at a high field (H = 11.5 T), where there is approximately a
pure power law resistivity ρc ∝ T 4/3 in a large temperature range, till to nearly 7 K. This
power law may define the presence of ferromagnetic spin fluctuations in CeIrIn5 which
leads to non-Fermi liquid behaviour in the normal state of this compound. Solid circles
and squares obtained by charge and heat transport measurements, respectively.

9.2.1 CePd2Si2 and CeNi2Ge2

Two heavy fermions CePd2Si2 and CeNi2Ge2 are electronically and structurally equiva-

lent compound. At ambient pressure, CePd2Si2 is an antiferromagnet with a TN ∼ 10 K.

The magnetic structure can be pictured as ferromagnetic (110) planes with spins nor-

mal to the planes and alternating in directions along the spin axis [75, 139]. CePd2Si2

shows superconductivity below 430 mK in a limited pressure region on either side of

pc=2.8 GPa [75, 139]. The electrical resistivity is characterized by a power-law with

exponent n nearly 1.2 ∼ 1.3 at the critical pressure (see Fig. 9.10) [52,75,77].

CeNi2Ge2, the isoelectronic relative to CePd2Si2, with no magnetic order at low pres-

sures, has a slightly smaller lattice constant and its zero pressure behaviour is expected

to be similar to that of CePd2Si2 just behind critical pressure [75]. CeNi2Ge2 is a SC
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Figure 9.9: (Left) The H − T phase diagram of CeIrIn5 obtained from specific heat
measurement. Fermi-liquid temperatures TFL derived from the electronic specific heat.
TM is the metamagnetic transition temperature taken from [108]. (Right) Electronic
specific heat, obtained by subtracting the Schottky and lattice contributions from the
total specific heat, as a function of temperature at various magnetic fields up to 17 T.
Fig adapted from [38].

at ambient pressure with Tc nearly 0.2 K. The resistivity shows the same temperature

dependence as for CePd2Si2 [75, 111, 62]. The observed exponent in both CePd2Si2 and

CeNi2Ge2 is nearly constant over almost two orders of magnitude in temperature. For the

origin of this exponent a frustrated spin coupling along the c-axis and hence a strongly

anisotropic spin fluctuation spectrum that may be more nearly 2D than 3D was sug-

gested [75]. However, recent dHvA measurements on CePd2Si2 have shown that the

Fermi surface does not present a low-dimensional character and then the magnetic cor-

relations have mainly a 3D character [194].

It should be noted that two SC domes have been reported in CeNi2Ge2 from resistivity

measurements under pressure [75, 37]. A maximum Tc in the second SC dome at high

pressures is nearly 0.4 K, the same Tc as in Ir115 compound. Moreover, recent neutron

scattering measurements on this compound show the presence of two low energy spin

fluctuations with an energy scale of 0.6 meV around the antiferromagnetic wave vectors

(1/2,1/2,0) and (0,0,3/4) that coexist with high-energy spin fluctuations with an energy

scale 4 meV and a vector (0.23,0.23,1/2) [98]. It is interesting to note it seems there are

two superconducting domes in CePd2Si2, too [75].
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Figure 9.10: Temperature dependence of resistivity in CePd2Si2 near the critical pres-
sure pc

∼=2.8GPa, where TN → 0K. Inset-bottom: resistivity plotted against T 1.2. Inset-
top: derivative of electrical resistivity in various pressures [77].

9.2.2 UPt3

The electrical resistivity of heavy fermion UPt3 with a TN ∼ 6 K and superconducting

transition Tc ∼ 0.5 K, shows also a ρ ∝ T 1.2 in high magnetic field. This compound

shows FL behaviour in the normal state, below 3 K. In high magnetic fields (H‖a), the

specific heat, electrical resistivity and susceptibility all show NFL behaviour nearly at

metamagnetic transition Bmetamag ∼ 20 T; C/T ∝ −logT over more than a decade in

temperature, ρ = ρ0+AT 1.2 (0.5K ≤ T ≤ 3 K) and χ = χ0−aT (0.5K ≤ T ≤ 20K) [109].

The resistivity increases nearly 10-fold at the critical regime between 0.5 and 3 K. The

data in all theses measurements at magnetic fields below and above metamagnetic field

indicate the presence of FL behaviour at low temperatures for B 6= Bmetamag. Note the

power law in the resistivity decrease from 2 to 1.2 by increasing field till to Bmetamag and

then grows at higher fields [109]. The TFL also decreases by increasing field to Bmetamag,

as the same behaviour we observed in the c-axis Ir115, and then increases.
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9.3 Evolution of magnetism and its interplay with

superconductivity

CeIr(In1−xCdx)5 compound show a competition between superconducting state and long

range AFM state, while in CeCoIn5 both these states coexist with each other [175]

(see Fig. 3.12 in Chapter 3). It seems in CeIr(In1−xCdx)5 compound superconductiv-

ity suppressed to zero at the same Cd content where the antiferromagnetism emerges

(xc,AF = xc,SC ≈ 0.05).

Exactly the same competition between superconductivity and antiferromagnetism

states has been reported in UPt3 doped with small amount of Pd. Neutron diffraction

and transverse-field muon spin relaxation measurements carried out U(Pt1−xPdx)3 show

that the critical Pd concentration for the emergence of the large-moment antiferromag-

netic phase is x ≈ 0.006. At the same Pd content, superconductivity also is completely

suppressed (xc,AF = xc,SC ≈ 0.006) (see Fig. 9.11). It was suggested the existence of a

magnetic quantum critical point, which coincides with the critical point for superconduc-

tivity, provides evidence for ferromagnetic spin-fluctuation mediated superconductivity,

which competes with antiferromagnetic order [51,50] 2. Interestingly enough that the ex-

istence of QCP at xc,AF ≈ 0.006 is supported by a decrease of the Fermi-liquid exponent

of the resistivity (n=2) to a value n=1.55 [70], i.e. close to the value n=1.5 predicted

for 3D antiferromagnetic critical fluctuations. 3

All of these evidences, together with a hybrid gap symmetry at low temperature for

CeIrIn5, support the presence of ferromagnetic spin fluctuations in CeIrIn5. It seems two

sorts of spin fluctuations, AFM and FM types are in competition with each other in pure

CeIrIn5 compound, so that at high magnetic fields the FM ones may dominate and leads

to a quantum phase transition, which appeared via the electrical resistivity power law

2In neutron diffraction measurements on U(Pt1−xPdx)3, two antiferromagnetic order were found [50].
One is the small moment antiferromagnetic order (SMAF) with TN ∼ 6 K reported for pure UPt3
and in doped compound till at least x=0.005. The small related ordered moment grows from 0.018
µB/U-atom for x=0 to 0.048µB/U-atom for x=0.005. TN of the SMAF phase does not vary with
alloying. Note no signal of the SMAF phase was detected in zero-field µSR (and NMR measurements)
so far [50, 107]. A second large-moment antiferromagnetic phase (LMAF) sets in at x=0.006 with a
maximum TN,LMAF ∼ 6K for optimal doping (x=0.05) with moment 0.62µB/U-atom. LMAF emerges
between x=0.005 and 0.01 [50].

3It has been suggested that no finding of the antiferromagnetic quantum critical point in pure UPt3
but upon doping, may help to understand of how an odd parity superconducting state can arise, while
the dominant fluctuations seem to be of antiferromagnetic nature. Thus, it was proposed that Pd doping
leads to a shift of the spectral weight from ”ferromagnetic” to ”antiferromagnetic” fluctuations [50].
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Figure 9.11: Magnetic and superconducting phase diagram for U(Pt1−xPdx)3 al-
loys. SMAF=small-moment antiferromagnetic phase, LMAF=large-moment antiferro-
magnetic phase, SC=superconducting phase. (Right) The same phase diagram with
x <0.012 (from [50]). Note to the similarity of this figure to Fig. 3.12 for CeIr(In1−xCdx)5.

4/3, decreasing of TFL by increasing field and diverging of C/T at low temepratures.

9.4 Conclusion

From the inter-plane charge and heat transport measurements in the normal state on

CeIrIn5 we have found:

• A pure T 1.33 ≡ T 4/3 power law in a wide temperature range at high magnetic fields

in c-axis transport. The power law ρc ∝ T 4/3 can be interpreted in 2D FM spin

fluctuations model.

• A linear temperature dependence for the difference between thermal and electrical

resistivities, δ(T ) ≡ L0T/κe − ρ, up to T = 4 K. This linear behaviour seems to be

consistent with the FM spin fluctuations models.

• Lorenz ratio, L/L0, shows a temperature independent behaviour up to T = 4 K at

applied field Hc2 ∼ 4 T , in contrast to AFM metal CeRhIn5 that this quantity goes

back to 1 at T = Tsf .
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• An interesting similarity between the results of Cd doped CeIrIn5 and Pd doped

UPt3 compounds; in both compounds superconductivity is in competition with

long range antiferromagnetism [50,175]. This beautiful competition lead to suggest

a ferromagnetic spin-fluctuation mediated superconductivity, which competes with

antiferromagnetic order, in UPt3 compound [50]. Ferromagnetic spin fluctuations

have not, to our knowledge, been predicted or observed in any compound in 115

family.

These evidences suggest the presence of different type of spin fluctuation in CeIrIn5

compound, in addition to the well-known AFM spin fluctuations in the 115 family. We

believe these evidences together with a diverging electronic specific heat at low temper-

atures at high field provides compelling evidence for the existence of QCP. It seems the

type of spin fluctuations and their dimensionality have strong effects on physical behav-

iour of CeIrIn5 and CeCoIn5, so that lead to different transport behaviours in these two

closely related compounds.



Chapter 10

Conclusions

In this thesis we have studied the normal and superconducting state of unconventional

superconductor CeIrIn5 by heat and charge transport measurements. The main goal

was to identify the order parameter in this heavy fermion compound, which will be

the first step to explore the microscopic mechanism of superconductivity in this system

and closely related systems. This is the first systematic study of thermal conductivity

and electrical resistivity of highly pure and doped single crystals of CeIrIn5 in two axial

crystal directions, J‖a and J‖c (heat current in the ab plane and along c-axis) in zero

and applied magnetic field.

While most experimental and theoretical research has reported d-wave gap symmetry

for CeMIn5 family, based on our thermal conductivity data we suggest a hybrid gap

symmetry, Eg, for CeIrIn5. This model describes very well the residual linear term of

thermal conductivity in both heat current directions, the thermal conductivity anisotropy,

and the behaviour of impurity and magnetic field effects on heat transport. The results

can be summarized as follows.

First, the in-plane thermal conductivity κa of CeIrIn5, measured down to Tc/8, reveals

a sizeable residual linear term κ0/T , which establishes the presence of nodes in the

superconducting gap. For J ‖ c, on the other hand, κ/T → 0 as T → 0. This profound

anisotropy in the limit T → 0, shows that the low-energy nodal quasiparticles carry heat

very well in the basal plane but very poorly, if at all, along the c-axis. This rules out

the possibility that this line-node is vertical (running along the c-axis). This eliminates

all but one of the allowed spin-singlet pairing states in the tetragonal structure with

D4h point group symmetry, including the d-wave states proposed for the closely related

compound CeCoIn5. The sole candidate left is the z(x+ iy) state of Eg symmetry. This

139
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result points to a fundamentally different type of superconductivity in CeIrIn5 at low

temperatures.

However µSR measurements on pure and 0.3%La-doped crystals showed no enhance-

ment of the spin relaxation rate in the spectra below Tc. This meant the absence of

a spontaneous magnetic field or the time-reversal symmetry-breaking expected for this

hybrid gap symmetry in the superconducting state. A comparison with Pd doped UPt3

(U(Pt1−xPdx)3), where small moment antiferromagnetism coexisting with superconduc-

tivity at low x has been detected by neutron scattering measurements, but never observed

in µSR and NMR measurements, suggests one possible explanation for this negative result

in Ir-115.

Second, nonmagnetic impurities strongly affect the superconducting state of CeIrIn5.

The first observation of universal thermal conductivity in a heavy fermion compound

have been performed via a doping study. Thermal conductivity along the conducting

plane shows universal response to doping, as expected for superconductors with line-

nodes in the superconducting gap. In stark contrast, the inter-plane heat transport

rapidly increases with doping in the T → 0 limit. These observations are compatible

with hybrid Eg gap symmetry.

Furthermore, we made a comparison between CeIrIn5 and the well known heavy

fermion superconductor UPt3. An amazing similarity between c-axis CeIrIn5 and b-axis

UPt3 data (allowing for the absence of universality in UPt3) all leave no doubt about the

absence of line nodes in the gap structure of UPt3 compound.

Third, measurements of the temperature and magnetic field phase diagram of the

inter-plane thermal conductivity in the mixed state in CeIrIn5 show multi-phase su-

perconductivity. We observed a strange anomaly at low temperature in the thermal

conductivity. This anomaly is obvious in highly pure samples and for fields applied in

the ab plane. This anomaly delineates a new region in the H − T phase diagram. This

might be a sign of a two-component order parameter in this material, consistent with the

two previous observations.

We also found that the inter-plane thermal conductivity data does not scale as T/
√
H.

This confirms the presence of a linearly-dispersing point node in the gap, consistent with

hybrid Eg gap symmetry.

Fourth, the inter-plane electrical resistivity shows a power law temperature depen-

dence ρ(T ) ∝ T 4/3 in a large temperature range at high fields. In addition to the

exponent 4/3, which is consistent with 2D FM spin-fluctuation theory, a comparison be-
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tween electrical and thermal resistivities has revealed a linear temperature dependence

of δ(T ) ≡ we(T ) − ρ(T ). The linear behaviour of this physical quantity, predicted and

observed in ferromagnetic systems, confirms the presence of a ferromagnetic spin fluc-

tuations in CeIrIn5. The competition between superconductivity and long range antifer-

romagnetism observed in the Cd-doped CeIrIn5 compound confirms this suggestion and

supports the proposal of superconductivity mediated by ferromagnetic spin fluctuations

in Ir115. We believe the T 4/3 power law resistivity together with a diverging electronic

specific heat C/T at low temperatures at high field provide compelling evidence for the

existence of a ferromagnetic quantum phase transition in CeIrIn5.

In summary, having extremely clean and stoichiometric single crystals in this study

has enabled the observation of new physics in the 115 materials. This work has stimulated

theoretical and experimental interest which have confirmed our conclusions. We hope this

low temperature work will help us to understand one of the main questions in the wide

world of superconductivity: what causes room temperature superconductivity?

A few future views:

• It has been predicted theoretically that for the two component superconductivity in

the tetragonal structure, the phase transition into the superconducting state must

be split into two phase transitions by an application of uniaxial stress in a− or b−
direction [141], while uniaxial stress in c− direction does not change the tetragonal

symmetry [141].

Moreover, it has been quite recently predicted that a multiband-multicomponent

tetragonal superconductor can show in-plane upper critical field anisotropy [141].

To explore experimentally those predictions would be interesting.

• There are no measurements on Ce1−xLaxIrIn5 alloys. What is the role of La im-

purity in this compound? What effect do La ions have on FM and AFM spin

fluctuations? What is the ground state of the compound at high-La doped per-

centage, compare with AFM ground state in CeIr(CdxIn1−x)5 alloys? What is the

critical amount of La to kill superconductivity? Is the critical amount of doping

for killing superconductivity the same in resistivity and bulk measurements?

• The hybrid gap symmetry breaks time reversal symmetry. In other words, there

should be an internal magnetic moment. µSR could not detect it. Inelastic neutron
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scattering may help in this regard.

• Heavy fermion UPt3 shows a metamagnetic transition and NFL behaviour at high

fields, around 20T; resistivity shows a power law ∼ T 1.2 at this magnetic field. It

has been suggested that the superconductivity is mediated by FM spin fluctuation

in this compound. Comparing charge and heat transport of this material in field,

to explore the temperature behaviour of δ(T ), may help to understand the meaning

of the n = 1.2 power law that has been seen in a few quantum critical systems.

• CeRhIn5 shows superconductivity under pressure, with the same power law resis-

tivity behaviour and Tc (at the critical pressure, 21 Kbar) as of Co-115. Moreover,

the dHvA measurements under pressure show a divergence of the effective mass

and change of the Fermi surface at nearly the same critical pressure. It would be

interesting to explore the T − H phase diagram and any quantum criticality in

this compound at the critical pressure, to compare it with of Co-115 at ambient

pressure.



Appendix A

Investigation of Broken Time

Reversal Symmetry in CeIrIn5 by

µSR

Besides of the thermal conductivity measurement which was the main measurement in

this study, this Appendix presents our Zero Field muon spin relaxation (ZF-µSR) study

on pure and La-doped CeIrIn5 materials. The aim is to search for spontaneous currents

in the superconducting state in this compound according to the predicted hybrid Eg gap

symmetry, as a gap symmetry in this material.

A.1 Introduction

Hybrid Eg structure, with the basic function (x + iy)z breaks time-reversal symmetry

and therefore spontaneously generates an internal magnetic moment around impurities.

Zero field µSR is one of the most sensitive techniques for detecting any weak static and

dynamic local magnetism. Time reversal-broken superconducting states are quite rare,

since unambiguous observation of such fields has been reported only in spin-triplet su-

perconductor Sr2RuO4 [123] (see Fig. A.1) and recently in PrOs4Sb12 [15]. Previous zero

field µSR measurements on CeIrIn5 have failed to detect such moments [84]. One possible

explanation is that the associated fields are too small in these high purity samples, as

also found in high quality crystals of UPt3 [49]. Another possibility for the absence of a

signal of moment in ZF-µSR in pure and Pd-doped (at low doping) UPt3 compound was
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Figure A.1: Zero-field relaxation rate in Sr2RuO4 with the initial muon spin polarization
perpendicular and parallel to the c-axis of the crystal [123].

attributed to a moment fluctuating at a rate > 10MHz [50,107].

Introducing non magnetic impurity to the system locally perturb the superconducting

order parameter, and thus create local currents due to a gradient in the phase, thus allows

the chance to detect the local magnetism. We tested the former hypothesis by studying

ZF-µSR of two orientations of CeIrIn5 (ab-plane and ac-plane) with 0.3% non-magnetic

La substituted for Ce. We also measured a pure sample as a reference.

A.2 A brief introduction to µSR

µSR spectroscopy uses implanted muons1 to probe the structure and dynamics of matter

at the microscopic level. Their spin (magnetic moment) is used as a magnetic probe. The

experiments must be performed at accelerator laboratories where suitable muon beams

are available. The beam is stopped in the material of interest.

Muons, like electrons, are elementary particles which do not feel the strong inter-

action. Both charge states exist (particle and antiparticle). So negative muons are like

heavy electrons, positive muons like heavy positrons. Muons are produced when a target

of graphite or other light element is exposed to a sufficiently high-energy proton beam;

proton-nucleon interactions generate pions in the first step and these particles then decay

quickly to muons; see Fig. A.2. Muons are injected into materials one at a time. After

quickly coming to rest (at a typical depth of ∼ 0.1 mm), the muon spins evolve in the

1The muons properties: spin 1/2, mass mµ
∼= 0.113mp

∼= 207me, magnetic moment µµ
∼= 3.18µp.
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Figure A.2: A schematic of producing muon beams, using high-energy protons to
produce short-lived muons.

local magnetic environment. The muon subsequently decays (lifetime of about 2.2µs),

emitting a positron preferentially in the direction of the muon spin at the time of decay.

By monitoring the polarization of the muon as a function of time, the information of the

local spin environment at each muon site can be provided [123].

In a µSR experiment, positive muons start off 100% spin polarized and are implanted

in the sample one at a time. In the absence of magnetic order, the spin polarization is

relaxed by randomly-orientated static nuclear dipole moments and is well-described by

the Gaussian Kubo-Toyabe function:

Pµ(t) =
1

3
+

2

3
(1 − t2∆2)e−

1

2
∆2t2 , (A.1)

where ∆/γµ is the width of the local field distribution and γµ is the muon gyromagnetic

ratio. In the magnetically ordered state, the µSR spectrum will exhibit precession (where

the frequency is proportional to the ordered moment) if the internal field is sufficiently

uniform. If the spontaneous field is weak, or there is a broad distribution of local fields

then one observes an increase in the relaxation of Pµ(t), where the increase in relaxation

corresponds to an order parameter [123].

A.3 Experiments

A.3.1 Samples

Three different batches of the same 0.3%La-doped level and one pure CeIrIn5 batch were

cut by Makariy Tanatar and I. Single crystals were cut into two types of slabs, ab and ac
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Figure A.3: Sample mount for zero field µSR measurements. The probe inserted such
that the initial muon spin polarization is ⊥ to the face of the crystals.

plane, with an average thickness of 0.5 mm and a mosaic surface nearly 1 cm2.

A.3.2 µSR: experimental details

Measurements were performed in the Meson Laboratory on the M15 beamline of TRI-

UMF, located in Vancouver, Canada. The spin-polarized positive muons with a momen-

tum of 29.8 MeV/c were implanted one at a time into the single crystals. The initial

muon spin polarization was parallel and perpendicular to the c-axis for ab and ac plane

samples, respectively. Samples were aligned and glued onto a silver holder (silver gives a

temperature-independent and essentially non-relaxing µSR signal in zero field measure-

ments). A dilution refrigerator was used to cool the samples down to 11 mK.

A.3.3 Results

Fig. A.4 shows the time evolution of the muon spin polarization in doped and pure CeIrIn5

crystals at different temperatures, T=35, 100, 150, 200, 300, 500, 750, 900mK and 1K. We

have observed nearly no change in the time spectra with decreasing temperature down to

35 mK, which is also indicated by Fig. A.5 where the relaxation rate is nearly independent

of temperature for either orientation of the La-doped and pure CeIrIn5. So it looks there

is no evidence of time-reversal symmetry breaking or any spontaneous magnetic field

in the superconducting phase, or at least can not be detected by µSR. Using previous

experiences on UPt3 [50, 107], which the small moments have been detected in neutron
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Figure A.4: Asymmetry in Ce0.997La0.003IrIn5 ac-plane and pure CeIrIn5 ab-plane sam-
ples at T = 35mK, 100mK, 150mK, 200mK, 300mK,... to 1K (below and above Tc).
Preliminary analysis of ZF µSR spectra. All curves have fall on top of each other. The
same result was observed for ab-plane doped crystals.
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scattering measurements and not at all in the µSR, neutron scattering measurements on

Ir115 crystals is suggested.

(a) (b)

(c)

Figure A.5: Preliminary analysis of zero field muon spin relaxation rate vs temperature
measured in (a) ab-plane doped, (b) ac-plane doped and in (c) ab-plane pure CeIrIn5. It
seems there is no enhancement of relaxation rate in the SC state (below Tc ≈ 0.4 K).



Appendix B

CeRhIn5 : Inter-plane Thermal and

Electrical Transport

This Appendix presents a summary of results provided by charge and heat transport

measurements on c−axis CeRhIn5. This is the first systematic study of the inter-plane

thermal conductivity and resistivity of this compound.

B.1 Introduction

CeRhIn5 is a well-characterized material in which spin fluctuations dominate the scat-

tering of electrons [162, 165]. In a detailed and systematic study of heat and charge

transport on a−axis CeRhIn5, J. Paglione et al. have obtained the q and ω dependence

of antiferromagnetic spin fluctuations and their effect on scattering of electrons in this

AFM compound. They found that the spin fluctuations are as effective in scattering of

electrons as they are in disordering moments, via observing the prefect similar behaviour

of the thermal resistivity and the magnetic entropy [165]. Furthurmore, they suggested

that the difference between the electronic thermal (we = L0T
κe

) and electrical (ρ) resistiv-

ities, called δ(T ), can be used as a direct probe of the characteristic energy of the spin

fluctuation spectrum (called Tsf ).

Going through CeCoIn5 compound and comparing the normal state charge and heat

data shows an anisotropic behaviour for spin fluctuations; while Tsf is nearly 5K in the

in-plane transport, it goes to zero in the c−axis transport [166]. This looks consistent

with more recently observation of an strong anisotropy violation of WF law at QCP in

this compound [215].
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Tableau B.1: Sample characteristics

sample α× 10−3(cm) R(mΩ) ρ(µΩcm) TN(K)

(room T) (room T)

Rh115-J‖c 1.596 20.32 32.43 3.8
F472S-”sample B”

Rh115-J‖c 1.036 31.3 32.43 3.8
F708-”sample small”

Therefore to search for the dimensionality of spin fluctuations and its role on the

properties of 115 family was one of the motivations for measuring c−axis CeRhIn5. We

found the same value of Tsf and the same temperature dependence of resistivity below

Neel temperature for either orientation of CeRhIn5 crystals, suggesting a 3D characteristic

behaviour of the spin fluctuations in CeRhIn5.

In the following, the results are just presented as figures. First we show the inter-

plane resistivity at low and high temperatures compared with the previous reported data.

Then we go through the heat transport results and make a comparison with the charge

transport.

Final point, the behaviour of spin fluctuations in the magnetic field is another in-

teresting story to look in. The H − T phase diagram CeRhIn5 displays at least three

separate phases as a function of applied field. Moreover, neutron scattering on Rh115

has shown insensitivity of the incommensurate magnetic structure and ordered moment

to pressure up to the applied pressure that superconductivity appears and coexist with

magnetism [121]. This insensitivity suggests the pressure does not change the nature of

magnetic order gradually. Moreover, in CeCoIn5 it was suggested that magnetic field has

effect on the nature of magnetic order [162], by observing a field-induced change in the

sign of magnetoresistance. Thus to probe effect of magnetic field on spin fluctuations

may help for further understanding of this family.

B.2 Results



Annexe B : CeRhIn5 : Inter-plane Thermal and Electrical Transport 151

0 2 4 6 8
0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300
0

10

20

30

40

50

60
ρ
 [
 µ

Ω
 c

m
 ]

  

 

 

        J||a

J||c   

 J||a Shishido 

 J||c shishido

 J||c Bao

ρ
 [
 µ

Ω
 c

m
 ]

T [ K ]

J||c Shishido

  

 

 

Rh115 

J||a Shishido

J||c our data

Figure B.1: Inter-plane resistivity of Rh115 compared with other group data at high
(top) and low temperatures (bottom). Bao data [20] at low temperature seems to behave
similar to ours. Note to the same Neel temperature for both current orientations in our
measurements (bottom). The electron conductivity is better in the c−axis than a−axis
direction, consistent with the thermal conductivity results shown later (see Fig. B.3.)
(data of other group are taken from [195,20,44] ).
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A comparison between c− and scaled a−axis resistivities. It seems the electrical resis-
tivity behaves nearly isotropic at least below TN . All these suggest a more 3D magnetic
correlation in Rh115.
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line). Heat transport is higher in the c-axis crystal direction. This is invert of what have
been observed in two cousin compound CeCoIn5 and CeIrIn5.
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Appendix C

Phonon Conductivity

In this Appendix a review on how to extract phonon conductivity, especially in high

conductive 115 compound is given. For more details the reader is referred to the thesis

of J. Paglione [162].

C.1 Phonon conductivity in CeIrIn5

In a typical metal, heat is mainly transported by electrons and phonons. Thus the total

thermal conductivity is the sum of the conductivities of these heat carriers, κ = κe + κph

(see Chapter 2 in this regard). In order to estimate the phonon contribution in pure

CeIrIn5 sample, we measured the thermal conductivity κ of a CeIrIn5 sample doped with

La impurities (with x=0.2), Ce1−xLaxIrIn5, which is structurally-equivalent material with

low electronic conductivity. This level of doping increases strongly the elastic impurity

scattering so that the inelastic scattering can be ignored at low temperatures. Therefore

one expects the electronic conductivity to satisfy the WF law at low temperatures. Thus,

considering κe

T
= L0

ρ
, one can estimate a phonon conductivity by κph/T = κ/T − L0/ρ.

For such a study, we measured two x=0.2 doped samples (a-axis and c-axis). The

residual resistivities increased to ρ0a = 16.2 and ρ0c = 53 µΩcm. This means the elastic

scattering increased by a factor of nearly 80 for either current directions (for pure CeIrIn5

samples: ρ0a = 0.2 and ρ0c = 0.6 µΩcm at Hc2 = 0.5 T), thus it is reasonable to assume

that inelastic scattering is negligible at low temperatures.

Fig. C.1(a) shows an example of the results on c-axis Ce0.8La0.2IrIn5, plotted as

κph/T = κ/T − L0/T vs T . The result is shown in zero and a high field. The negligible

field dependence of the results supports the truly phononic approach, which magnetic
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Figure C.1: (a) Estimate of inter-plane phonon contribution to the thermal conductivity
of CeIrIn5. In an impurity-doped sample, where elastic scattering dominates entirely
at low temperature, the difference between thermal and electrical conductivities gives
the phonon conductivity κph. The phonon conductivity is field independent. (b) A
comparison between the same phonon contribution and the thermal conductivity of pure
CeIrIn5.

field does not affect the phonon conductivity. κph/T varies approximately linear with

temperature at very low temperatures, below 0.5 K, followed by a maximum and satura-

tion behaviour at higher temperatures. κph ∝ T 2 at low temperatures is expected for the

phonon conductivity of pure metals, where phonon-electron scattering is the dominant

scattering process.

A comparison between the phonon conductivity and the total thermal conductivity

in the c-axis of pure sample is shown in Fig. C.1(b). It shows that κph is on the order

of 3% of the measured inter-plane conductivity at T = 1K (approximately the same

percentage is observed for in-plane current direction at T = 1K). Thus we can say the

phonon contribution to the measured thermal conductivity in pure CeIrIn5 samples is

negligible below 1 K.
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C.2 Phonon conductivity in 115 family, a compari-

son

Here it is instructive to have a comparison among all the extracted phonon conductivities

for CeCoIn5 [162,215], CeIrIn5 in this study and CeRhIn5 (measured by J.-P.Reid et al.,

in our group), which is shown in Fig. C.2. In this figure, we have also shown temperature

dependence of the phonon conductivity in each compound for temperature ranges up to

nearly 5K. We have found:

• In CeIrIn5 the phonon term κph is smaller for inter-plane transport, by a factor 2 at

T = 1K (or at higher temperatures). Also, the temperature dependence of phonon

conductivity is approximately the same for either current orientation, κph ∼ T 1.3.

• The in-plane phonon conductivity is larger in CeCoIn5 than CeIrIn5, by a factor 2

at T = 4K (Although, it seems the magnitude of phonon conductivity is the same

in CeCoIn5 and CeIrIn5 and negligible compared to κe below 1K). This also seems

true in a comparison between the inter-plane transport of these two compounds.

• The power law temperature dependence of the phonon conductivity in CeCoIn5

at high temperature range depends stronger on temperature compared to that of

CeIrIn5; κph ∼ T 1.65 and κph ∼ T 1.3, respectively.

• Phonon conductivity is nearly negligible below TN for inter-plane CeRhIn5. It is

approximately 2.7% of the measured thermal conductivity of pure sample at TN =

4K (see the thermal conductivity of pure c-axis CeRhIn5 in Appendix B).
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Appendix D

Ce0.999La0.001IrIn5: Thermal

Conductivity in Magnetic Field

This Appendix presents the field dependence of thermal conductivity of doped CeIrIn5

samples which is not shown in the main text.

The thermal conductivity of a- and c-axis doped samples in the magnetic field have

been measured (the results of application of field on pure samples came in Chapter 7).

Fig. D.1 shows the in-plane and inter-plane thermal conductivity of 0.1%La-doped sam-

ples as a function of magnetic field parallel to c−axis with temperature held constant at

90 mK. As we mentioned previously, in this range of temperature the thermal conduc-

tivity is completely electronic in the system. We observe two features.

First, both curves show nearly the same field dependence up to Hc2; J‖c and J‖a show

nearly isotrpic behaviour at low fields and near Hc2. This is consistent with broadening

point nodes with impurity and acting like line nodes. Although, impurity scattering

effects can mask the real gap structure of the system. Note in the pure crystals (in

Chapter 7) we observed an anisotropic behaviour at low temperature under applied field

between a- and c-axis heat transport data, suggesting that the density of states associated

with the linear point nodes and that associated with the line node has different energy

and field dependence, as this is the case for the hybrid gap symmtery.

Second, in impure samples the transition to the normal state is broadened (κ is more

linear vs H) compared to the pure ones that shows (at least for the c-axis samples) a steep

transition to the normal state near Hc2. In the pure limit, Maki [131] has calculated the

thermal conductivity by making use of an analogy with the case of a thin film carrying
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Figure D.1: The in-plane and inter-plane thermal conductivity, κ/T , of 0.1% La-doped
CeIrIn5 at T = 90 mK as a function of applied field. Note to the similar behaviour of
two heat current directions. We argue impurities broaden the linear point nodes at the
poles so that they behave as a line node.

an electronic current, and concludes that the thermal conductivity should vary as (Hc2−
H)1/2 near Hc2, so that the slope of the conductivity vs field at Hc2 should be infinite. For

the impure samples and at high fields, Lowell [122] observed a linear increase of thermal

conductivity with field. Although, the linear behaviour extends well below Hc2.

In brief, it is clear that κ(H) at low temperatures in CeIrIn5 compound is not like

as well-known behaviour for s-wave or d-wave superconductors and has a peculiar be-

haviour that not explained by the existing models. The isotropic field dependence of

thermal conductivity of La-doped sampels seems to consist with the suggested hybrid

gap symmetry.
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Figure D.2: Louis Taillefer’s group, May 2007. (L to R): (back) Nicolas Doiron-
Leyraud, David Le Boeuf, Jean Philippe Reid, Louis Taillefer, Makariy Tanatar, (front)
Jacques Corbin, Ramzy Daou, Hamideh Shakeripour, Doug Bonn.
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Figure D.3: Mount Damavand in summer. The mount is a dormant volcano with the
height 5,671 metres and the highest peak in Iran. It is a special place in the Persian
mythology. Bottom: my friends and I are on the peak. ...with the hope of coming over
the humanity peaks.


